
- •4)Гомоциклические (ароматические) аминокислоты
- •31) Лиазы.
- •Номенклатура
- •Авитаминозы Причины
- •Биологическая роль
- •Как может повлиять изменение одного азотистого основания в мРнк на аминокислотную последовательность полипептида?
- •Макроэргические соединения: атф и другие нуклеозидтрифосфаты, креатинфосфат, аргининфосфат и другие. Напишите структурную формулу атф. Укажите макроэргические связи.
- •Какие химические соединения называются макроэргическими? Напишите формулы нуклеотидов, являющихся макроэргическими соединениями. Какова их биологическая роль.
- •Классификация и номенклатура углеводов. Особенности строения моносахаридов.
- •Дайте определения следующим понятиям: оптические антиподы, эпимеры, диастереоизомеры, рацемическая смесь.
- •Что такое мутаротация? Как можно объяснить преобладание [3- d-глюкопиранозы в растворе после стояния? Какие еще формы глюкозы находятся в растворе? Напишите формулы.
- •Основные таутомерные формы глюкозы в растворе. Напишите их формулы. Что такое мутаротация?
- •Какая функциональная группа глюкозы проявляет восстанавливающие свойства? Напишите схему реакции окисления глюкозы гидроксидом меди (II).
- •Химические свойства моносахаридов (реакции с участием карбонильной и спиртовой групп, гликозидного гидроксила).
- •Охарактеризуйте производные моносахаридов: аминосахара, кислоты, гликозиды. Приведите примеры и напишите формулы.
- •Структура, свойства и биологическая роль аминосахаров и их ацильных производых. Напишите структурную формулу n-ацетилнейраминовой кислоты.
- •Что такое гликозиды? Как определить принадлежность гликозидов к l- и d-ряду? Напишите формулы следующих веществ:
- •Какой вывод можно сделать о химических свойствах сахарозы на основании ее строения? Способна ли она к мутаротации? Может ли она восстанавливать аммиачный раствор серебра, реактив Фелинга?
- •Строение сахарозы (напишите структурную формулу), её свойства. Инверсия сахарозы. Как называется и чем характеризуется подобный тип олигосахаридов?
- •Гомогликаны, их строение и функции. Напишите структурную формулу фрагмента гликогена с точкой ветвления и целлюлозы.
- •Охарактеризуйте физико-химические свойства и укажите структурные особенности крахмала, гликогена и целлюлозы. Укажите черты сходства и различия в строении и свойствах указанных гомогликанов.
- •Гетерогликаны, их строение и функции. Приведите примеры. Напишите структурную формулу фрагмента какого-либо гетерогликана.
- •Классификация и физико-химические свойства липидов.
- •Строение, физико-химические свойства жирных кислот. Приведите примеры. Напишите структурную формулу линоленовой кислоты.
- •Характеристика высших жирных кислот, входящих в состав жира. Что называется кислотным числом, числом омыления, йодным числом.
- •Арахидоновая кислота и ее производные, их роль в обмене веществ.
- •Охарактеризуйте простые липиды: ацилглицерины, воски. Напишите структурную формулу триацилглицерина, дайте его полное название (с указанием жирнокислотных остатков).
- •Регуляция активности ферментов путем ковалентной модификации. Приведите примеры.
- •Гормональная регуляция активности ферментов с участием вторичных посредников. (??)
- •Роль внутриклеточных посредников в проведении и усилении гормонального сигнала. (???)
- •Биосинтез рнк. Этапы транскрипции. Процессинг мРнк.
- •Транскрипция: биохимические механизмы и биологическая роль транскрипции.
- •Репликация днк; молекулярные механизмы и биологическая роль.
- •Механизм действия стероидных гормонов.
- •Мембранно-опосредованный механизм действия пептидных и белковых гормонов.
- •Назовите а-кетокислоты, образующиеся из аминокислот (аспартата, аланина) в реакциях трансаминирования с а-кетоглутаратом. Опишите механизм трансаминирования.
- •Назовите пути образования и распада аминокислот. Декарбоксилирование аминокислот. Физиологическая роль продуктов этого процесса.
- •138 Молекул атф
- •Синтез триацилглицеринов
- •22) Биосинтез глицерофосфолипидов
Роль внутриклеточных посредников в проведении и усилении гормонального сигнала. (???)
Биосинтез рнк. Этапы транскрипции. Процессинг мРнк.
Транскрипция - первая стадия реализации генетической информации в клетке. В ходе процесса образуются молекулы мРНК, служащие матрицей для синтеза белков, а также транспортные, рибосомальные и другие виды молекул РНК, выполняющие структурные, адапторные и каталитические функции.
Транскрипция у эукариотов происходит в ядре. В основе механизма транскрипции лежит тот же структурный .принцип комплементарного спаривания оснований в молекуле РНК (G ≡ C, A=U и Т=А). ДНК служит только матрицей и в ходе транскрипции не изменяется. Рибонукле-озидтрифосфаты (ЦТФ, ГТФ, АТФ, УТФ) -субстраты и источники энергии, необходимые для протекания полимеразной реакции, образования 3',5'-фосфодиэфирной связи между рибонуклеозидмонофосфатами.
Синтез молекул РНК начинается в определённых последовательностях (сайтах) ДНК, которые называют промоторы, и завершается в терминирующих участках (сайты терминации). Участок ДНК, ограниченный промотором и сайтом терминации, представляет собой единицу транскрипции - транскриптон. У эукариотов в состав транскриптона, как правило, входит один ген, у прокариотов несколько. В каждом транскриптоне присутствует неинформативная зона; она содержит специфические последовательности нуклеотидов, с которыми взаимодействуют регуляторные транскрипционные факторы.
Транскрипционые факторы - белки, взаимодействующие с определёнными регуляторными сайтами и ускоряющие или замедляющие процесс транскрипции. Соотношение информативной и неинформативной частей в транскриптонах эукариотов составляет в среднем 1:9 (у прокариотов 9:1).
Соседние транскриптоны могут быть отделены друг от друга нетранскрибируемыми участками ДНК. Разделение ДНК на множество транскриптонов позволяет осуществлять с разной активностью индивидуальное считывание (транскрипцию) разных генов.
В каждом транскриптоне транскрибируется только одна из двух цепей ДНК, которая называется матричной, вторая, комплементарная ей цепь, называется кодирующей. Синтез цепи РНК идёт от 5'- к З'-концу, при этом матричная цепь ДНК всегда антипараллельна синтезируемой нуклеиновой кислоте.
Транскрипция не связана с фазами клеточного цикла; она может ускоряться и замедляться в зависимости от потребности клетки или организма в определённом белке.
РНК-полимеразы
Биосинтез РНК осуществляется ДНК-зависимыми РНК-полимеразами. В ядрах эукариотов обнаружены 3 специализированные РНК-полимеразы: РНК-полимераза I, синтезирующая пре-рРНК; РНК-полимераза II, ответственная за синтез пре-мРНК; РНК-полимераза III, синтезирующая пре-тРНК. РНК-полимеразы - олигомерные ферменты, состоящие из нескольких субъединиц - 2α, β, β', σ. Субъединица о (сигма) выполняет регуляторную функцию, это один из факторов инициации транскрипции, РНК-полимеразы I, II, III, узнающие разные промоторы, содержат разные по строению субъединицы σ.
Стадии транскрипции
В процессе транскрипции различают 3 стадии: инициацию, элонгацию и терминацию.
Инициация
Активация промотора происходит с помощью большого белка - ТАТА-фактора, называемого так потому, что он взаимодействует со специфической последовательностью нуклеотидов промотора - ТАТААА- (ТАТА-бокс) (рис. 4-29).
Присоединение ТАТА-фактора облегчает взаимодействие промотора с РНК-полимеразой. Факторы инициации вызывают изменение кон-формации РНК-полимеразы и обеспечивают раскручивание примерно одного витка спирали ДНК, т.е. образуется транскрипционная вилка,
Промоторные элементы - специфические последовательности нуклеотидов, характерные для любого промотора, связывающего РНК-полимеразу. Первый промоторный элемент - последовательность АТАТАА- (ТАТА-бокс) отделён от сайта начала транскрипции приблизительно на 25 пар нуклеотидов (п.н.). На расстоянии примерно 40 (иногда до 120) п.н. от него располагается последовательность GGCCAATC- (СААТ-бокс).
После того как синтезирован олигонуклеотид из 8-10 нуклеотидных остатков, σ-субъединица отделяется от РНК-полимеразы, а вместо неё к молекуле фермента присоединяются несколько факторов элонгации.
Элонгация
Факторы элонгации повышают активность РНК-полимеразы и облегчают расхождение цепей ДНК. Синтез молекулы РНК идёт от 5'- к З'-концу комплементарно матричной цепи ДНК. На стадии элонгации, в области транскрипционной вилки, одновременно разделены примерно 18 нуклеотидных пар ДНК. Растущий конец цепи РНК образует временную гибридную спираль, около 12 пар нуклеотидных остатков, с матричной цепью ДНК. По мере продвижения РНК-полимеразы по матрице в направлении от 3'- к 5'-концу впереди неё происходит расхождение, а позади - восстановление двойной спирали ДНК.
Терминация
Раскручивание двойной спирали ДНК в области сайта терминации делает его доступным для фактора терминации. Завершается синтез РНК в стадии транскрипции:1 - присоединение ТАТА-фактора к промотору. Чтобы промотор был узнан РНК-полимеразой, необходимо образование транскрипционного комплекса ТАТА-фактор/ТАТА-бокс (промотор). ТАТА-фактор остаётся связанным с ТАТА-боксом во время транскрипции, это облегчает использование промотора многими молекулами РНК-полимеразы; 2 - образование транскрипционной вилки; 3 - элонгация; 4.- терминация.
строго определенных участках матрицы - терминаторах (сайты терминации). Фактор терминации облегчает отделение первичного транскрипта (пре-мРНК), комплементарного матрице, и РНК-полимеразы от матрицы. РНК-полимераза может вступить в следующий цикл транскрипции после присоединения субъединицы σ.
Ковалентная модификация (процессинг) матричной РНК
Первичные транскрипты мРНК, прежде чем будут использованы в ходе синтеза белка, подвергаются ряду ковалентных модификаций. Эти модификации необходимы для функционирования мРНК в качестве матрицы.
Модификация 5'-конца
Модификации пре-мРНК начинаются на стадии элонгации. Когда длина первичного транскрипта достигает примерно 30 нуклеотидных остатков, происходит кэпирование его 5'-конца. Осуществляет кэпирование гуанилилтрансфераза. Фермент гидролизует макроэргическую связь в молекуле ГТФ и присоединяет нуклеотиддифосфатный остаток 5'-фосфатной группой к 5'-концу синтезированного фрагмента РНК с образованием 5', 5'-фосфодиэфирной связи. Последующее метилирование остатка гуанина в составе ГТФ с образованием N7-метилгуанозина завершает формирование кэпа (рис. 4-31).
Модифицированный 5'-конец обеспечивает инициацию трансляции, удлиняет время жизни мРНК, защищая её от действия 5'-экзонуклеаз в цитоплазме. Кэпирование необходимо для инициации синтеза белка, так как инициирующие триплеты AUG, GUG распознаются рибосомой только если присутствует кэп. Наличие кэпа также необходимо для работы сложной ферментной системы, обеспечивающей удаление нитронов.
Модификация 3'-конца
3'-Конец большинства транскриптов, синтезированных РНК-полимеразой II, также подвергается модификации, при которой специальным ферментом полиА-полимеразой формируется полиА-последовательность (полиА-"хвост"), состоящая из 100-200 остатков аде-ниловой кислоты.
Сигналом к началу полиаденилирования является последовательность -AAUAAA- на растущей цепи РНК. Фермент полиА-полимераза, проявляя экзонуклеазную активность, разрывает 3'-фосфоэфирную связь после появления в цепи РНК специфической последовательности -AAUAAA-. К 3'-концу в точке разрыва полиА-полимераза наращивает по-лиА-"хвост", Наличие полиА-последовательности на 3'-конце облегчает выход мРНК из ядра и замедляет её гидролиз в цитоплазме.
Ферменты, осуществляющие кэширование и полиаденилирование, избирательно связываются с РНК-полимеразой II, и в отсутствие полимеразы неактивны.