
- •Вопросы по органической химии
- •Ионная и ковалентная связи в органических соединениях.
- •Координационная и семиполярная связи.
- •Номенклатура органических соединений.
- •Атомные орбитали s- и p-типа. Гибридизация орбиталей,δ- и π-связи.
- •Тетраэдрическая модель атома углерода. Теория строения Бутлерова.
- •Структурная изомерия и изомерия положения.
- •Алканы. Номенклатура, физические свойства, методы получения.
- •Химические свойства алканов.
- •Механизмы радикальных реакций (радикальное галогенирование и сульфохлорирование).
- •Алкены (этиленовые углеводороды), π-связь. Номенклатура, физические свойства. Методы получения.
- •Получение алкенов
- •Получение этилена в лаборатории
- •Химические свойства алкенов
- •17. Изомерия, природные источники и способы получения олефинов
- •18. Дегидративание первичных спиртов, физические и механические свойства олефинов
- •19. Правила Марковникова. Метод Вагнера
- •20. Полимеризация олефинов
- •Правило Марковникова. Исключения из этого правила (перекисный эффект Хараша, присоединение к α,β- непредельным карбонильным соединениям. )
- •Электронная природа двойной связи углерод-углерод. Цис-транс изомерия этиленовых углеводородов.
- •Химические свойства алкенов.
- •Алкины. Номенклатура , способы получения.
- •Алкины. Химические свойства. Реакции присоединения:
- •1) Присоединение водорода (гидрирование). На I ступени образуются алкены, на II ступени – алканы.
- •Сходства и различия в химических свойствах алкенов и алкинов.
- •Диеновые углеводороды . Электронное строение . Методы получения.
- •1. Строение и классификация
- •2. Номенклатура и изомерия
- •3. Получение диенов
- •4. Физические и химические свойства
- •5. Отдельные представители
- •6. Каучуки и резины (эластомеры)
- •Реакционная способность диеновых углеводородов в реакциях присоединения.
- •Полимеризация алкенов и диенов. Природный и синтетический каучук.
- •Ароматические углеводороды. Строение бензола . Ароматичность. Методы получения гомологов бензола.
- •Реакции электрофильного замещения (на примере соединений ароматического ряда).
- •Теория замещения в ароматических соединениях. Реакции электрофильного замещения . Ориентанты 1 рода(орто-, пара- ориентанты) .
- •Теория замещения в ароматических соединениях. Реакции электрофильного замещения. Ориентанты 2 рода (мета- ориентанты).
- •Механизмы органических реакций-замещение, присоединение, отщепление.
Ионная и ковалентная связи в органических соединениях.
Ковалентная связь образуется
в результате обобществления электронов
(с образованием общих электронных пар),
которое происходит в ходе перекрывания
электронных облаков. В образовании
ковалентной связи участвуют электронные
облака двух атомов.
Различают две основные разновидности
ковалентной связи:
а) неполярную
и б) полярную.
а)
Ковалентная неполярная связь образуется
между атомами неметалла одного и того
химического элемента. Такую связь имеют
простые вещества, например О2;
N2;
C12.
Можно привести схему образования
молекулы водорода:
(на
схеме электроны обозначены точками).
б) Ковалентная полярная связь образуется
между атомами различных неметаллов.
Схематично
образование ковалентной полярной связи
в молекуле НС1 можно изобразить так:
Общая
электронная плотность оказывается
смещенной в сторону хлора, в результате
чего на атоме хлора возникает частичный
отрицательный заряд
,
а на атоме водорода — частичный
положительный
.
Таким образом, молекула становится
полярной:
Свойства
ковалентной связи
1. Насыщаемость- способность атомов образовывать ограниченное число ковалентных связей. Например, нельзя присоединить еще один атом водорода к молекуле H2 или HCl так как спин электрона водорода окажется параллельным спину одного из электронов в связующей электронной паре и будет происходить отталкивание водорода. Благодаря насыщаемости связей молекулы имеют определенный состав: H2, а не H3; HCl, а не H2Cl и т.д.
2. Направленность ковалентной связи определяет пространственную структуру молекул. Так как атомные орбитали пространственно ориентированы, то перекрывание электронных облаков происходит по определенным направлениям, что и обусловливает направленность ковалентной связи. Количественно направленность выражается в виде валентных углов между направлениями химической связи в молекулах.
Р
ассмотрим
это на примере образования HCl.
Как известно, ковалентная связь возникает
в направлении максимального перекрывания
электронных облаков (орбиталей) вдоль
линии взаимодействующих атомов: (рис.
3). При образовании молекулы HCl
происходит перекрывание s-
орбитали атома водорода с р-орбиталью
атома хлора и молекула имеет линейную
форму.
3. Полярность ковалентной связи. Если ковалентная связь образована одинаковыми атомами, например, Н - Н, О = О, Cl - Cl, то обобществленные электроны равномерно распределены между ними. Такая связь называется ковалентной неполярной. Если же один из атомов сильнее притягивает электроны, то электронная пара смещается в сторону этого атома и в этом случае возникает полярная ковалентная связь. Критерием способности атома притягивать электрон может служить электроотрицательность (ЭО). Чем выше ЭО у атома, тем вероятнее смещение электронной пары в сторону ядра этого атома.
Вследствие смещения электронной пары к одному из ядер повышается плотность отрицательного заряда у данного атома, и атом получает заряд, называемый эффективным зарядом атома δ‾. У второго атома повышается плотность положительного заряда δ+. Вследствие этого возникает диполь, представляющий собой нейтральную частицу с одинаковыми по величине положительными и отрицательными зарядами, находящимися на определенном расстоянии (длина диполя) lд друг от друга. Мерой полярности связи служит электрический момент диполя μсв, равный произведению эффективного заряда на длину диполя:
Ионной называется связь между ионами, т. е. заряженными частицами, образовавшимися из атома или группы атомов в результате присоединения или отдачи электронов. Ионная связь характерна для солей и щелочей. Сущность ионной связи лучше рассмотреть на примере образования хлорида натрия. Натрий, как щелочной металл, склонен отдавать электрон, находящийся на внешнем электронном слое. Хлор же, наоборот, стремится присоединить к себе один электрон. В результате натрий отдает свой электрон хлору. В итоге образуются противоположно заряженные частицы — ионы Na+ и Сl-, которые притягиваются друг к другу. При ответе следует обратить внимание, что вещества, состоящие из ионов, образованы типичными металлами и неметаллами. Они представляют собой ионные кристаллические вещества, т. е. вещества, кристаллы которых образованы ионами, а не молекулами. После рассмотрения каждого вида связи следует перейти к их сравнительной характеристике. Для ковалентной неполярной, полярной и ионной связи общим является участие в образовании связи внешних электронов, которые еще называют валентными. Различие же состоит в том, насколько электроны, участвующие в образовании связи, становятся общими. Если эти электроны в одинаковой мере принадлежат обоим атомам, то связь ковалентное неполярная; если эти электроны смещены к одному атому больше, чем другому, то связь ковалентная полярная. В случае, если электроны, участвующие в образовании связи, принадлежат одному атому, то связь ионная. Металлическая связь — связь между ион-атомами в кристаллической решетке металлов и сплавах, осуществляемая за счет притяжения свободно перемещающихся (по кристаллу) электронов (Mg, Fe). Все вышеперечисленные отличия в механизме образования связи объясняют различие в свойствах веществ с разными видами связей.