Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Экзамен биосфера.docx
Скачиваний:
6
Добавлен:
24.09.2019
Размер:
213.17 Кб
Скачать

Вопрос 1.

Удивительной фигурой предстает Владимир Иванович Вернадский в естествознании XX века. Вернадский был натуралистом в широком смысле этого слова, может быть, последним в истории науки. Труды Вернадского не просто основополагающие в какой-то отрасли - Вернадский закладывал новые науки: биогеохимию и радиогеологию, был одним из создателей генетической минералогии, геохимии. Венцом его научного творчества стало учение о биосфере, области жизни на планете.

Вопрос 3.

Образование и эволюция планеты Земля.

ОБРАЗОВАНИЕ ЗЕМЛИ

В.И. Вернадский начал систематическое изучение единого процесса развития с момента, возникновения Земли, который отстоит от сегодняшнего дня на 4,5 млрд лет. Опираясь на открытия последних десятилетий, мы можем нарисовать более полную (чем у В. И. Вернадского) картину мирового эволюционного процесса, сдвинув начало отсчета уже на пару десятков миллиардов лет. Поэтому тот эволюционный процесс, который изучал В. И. Вернадский, сейчас мы имеем право рассматривать лишь как фрагмент единого процесса развития материи.

За последние десятилетия было сделано еще несколько эпохальных открытий, позволяющих уточнить учение В.И. Вернадского и связать воедино многие факты, которые до этого носили фрагментарный характер. Во-первых, совсем недавно были обнаружены следы жизни на Земле, которая существовала 3,5–3,8 млрд. лет тому назад. Другими словами, возникновение Земли как космического тела и появление на ней жизни произошли, по космическим масштабам, почти одновременно. Этот факт переоценить невозможно!

Обычно исходная плотность межзвездных облаков недостаточна для того, чтобы в них самопроизвольно начинался процесс образования звезд и планет. Однако взрывы сверхновых резко меняют картину: они порождают в межзвездной среде ударные волны, которые вызывают повышение давления и плотности вещества на отдельных участках межзвездного пространства. При этом могут возникать сгущения, способные в дальнейшем сжиматься уже за счет самогравитации. Примерно так, по расчетам ученых, и происходило зарождение нашей планетной системы, в центральной области которой по мере роста давления и температуры сформировался гигантский газовый сгусток – Протосолнце.

Нужно было, чтобы прошло не менее 2/3 времени существования нашей Вселенной и половина – ее галактик, чтобы в круговой полосе самого быстрого галактического вращения в одной из них зажглось Солнце. Однако до химической активности, характерной для планет, было еще далеко. Из 105 элементов на Солнце обнаружены 74, из них по массе 98 % приходится на Н и Не.

Возникновение вещества планет вероятнее всего стало возможным лишь благодаря событиям необычайным и быстрым (происходящим в одном районе Вселенной один раз в 15-300 млн лет) – взрыву сверхновых звезд или, возможно, появлению второго блуждающего солнца, условно именуемого Немезидой (Немезида – имя древнегреческой богини, карающей за нарушение моральных норм, преступление и излишнюю гордыню). Оно могло приблизить к Солнцу вещество из астероидного облака Оорота (с массой в 100 раз большей, чем у Солнца, и находящегося почти за 200 млрд. км) и обеспечить этот принос большого количества разных веществ. Но даже если наши планеты по веществу как бы экзотические «пришельцы», они все же стали приемными детьми Солнца. Поток его плазмы, так называемого солнечного ветра (350 км/с), снес с ближних планет большую часть массы легких элементов и сделал их особенно тяжелыми (плотными). Это произошло 4,6 млрд лет тому назад, а весь планетогенез занял всего около 1 млн. лет.

Одновременно со сжатием протосолнечного облака под влиянием центробежных сил его периферийные участки стягивались к экваториальной плоскости вращения облака, превращаясь таким путем в плоский диск – протопланетное облако.

Стоит заметить, что формирование Солнца как нормальной желтой звезды из сжимающегося первичного сгустка газов и пыли происходило значительно быстрее, чем формирование планет, – «всего» несколько миллионов лет. Поэтому молодое Солнце неизбежно влияло на условия слипания вещества в окружающем его протопланегном диске. За счет солнечного ветра (высокоэнергетического потока заряженных частиц) из околосолнечного пространства были выметены на периферию нашей системы все газовые и летучие компоненты исходного облака. С другой стороны, молодое Солнце так «прогрело» первоначальное газопылевое облако, что еще до начала процесса формирования планет оно оказалось сильно дифференцированным. Так, например, есть определенная зависимость плотности планет от их расстояния от Солнца, и, только внешние планеты Солнечной системы обладают массивными газовыми оболочками.

Постепенно с ростом плотности в этом плоском диске резко возросла вероятность столкновения частиц и их слипания. Так появились первичные тела диаметром всего в несколько метров. Уплотнение первичного роя тел способствовало их дальнейшему росту и постепенному превращению в более крупные тела с поперечными размерами уже в десятки и сотни километров. В тогдашних условиях у таких крупных «зародышей» стал появляться самостоятельный характер – собственное гравитационное поле, которое еще более увеличивало возможности захвата мелких тел. Одним из таких зародышей четыре с половиной миллиарда лег назад стала наша Земля.

Среди тел, которые сталкивались с нашей молодой планетой, встречались тела с лунными размерами. Разогрев Планеты в результате подобных столкновений позволил начаться эволюции Земли еще в ходе ее формирования. В то время, когда начальная стадия образования планеты еще не была завершена и по ее поверхности все еще «стучали» метеориты и астероиды, которые одновременно привносили различные газы, а часть их удаляли, внутри планеты уже началась дифференциация вещества.

До недавнего времени считалось, что любое падающее на Протоземлю тело так и остается на ней, как бы прилипая. Но оказалось, что это слишком большое допущение – что-то ведь должно было и «отскакивать» от планеты, тем более современной атмосферы еще не существовало.

При ударе о Землю тела оставляли на ней около девяноста девяти процентов своей массы. Но кое-что все же выбрасывалось на многие тысячи километров вверх. Именно за счет этих ничтожных процентов и сформировалась Луна.

Ученые рассчитали, что в то время, когда масса Земли постепенно приближалась к семидесяти процентам от современной, тела, ударяющиеся о поверхность планеты Протоземли, достигали таких скоростей, что не только вызвали появление отдельных участков расплава, но и перемешивали своими ударами слой до тысячи километров глубиной!

В дальнейшем, при росте массы Земли от 0,7 до 0,95 процентов ее современной величины, средняя толщина слоя ударного перемешивания уже уменьшилась от тысячи до первых сотен километров. Вполне естественно, что с течением времени под первичной поверхностью Земли – пока примитивной коры, которая подвергалась ударам многочисленных тел, - началась термогравитационная конвекция: тяжелое двигалось вниз, легкое наверх. Подстегиваемый постоянно падающими телами, постепенно, набирая обороты, развивался прогрев Земли, который достигал тысячи градусов на глубинах около тысячи километров, шла дифференциация вещества, словом, все то, что можно назвать началом развития планеты.

Формирование Земли как планеты, сопровождавшееся падением астероидов и метеоритов, продолжалось около 100 млн. лет, т.е. 2% времени от всей жизни планеты.

ЭВОЛЮЦИЯ ПЛАНЕТЫ

Простое разделение вещества планеты по плотности так бы и происходило до сегодняшнего дня, как это случилось (на ранних стадиях) с Марсом или Венерой, Однако на их поверхности нет рифтов и движущихся континентов, хотя первичный материал, из которого сформировались эти планеты, был почти один и тот же.

На Земле, в отличие от Марса и Венеры, были водные бассейны. В них образовались осадочные породы и затем в процессе метаморфизации они превращались в граниты. Иными словами, кроме базальтовой коры, на Земле случились граниты. А гранитная кора отличается тем, что она легче и может образовывать достаточно «легкие» континенты, плавающие на более плотных базальтах.

С другой стороны, для того чтобы происходило движение плит по поверхности планеты, необходимо перемещение вещества под ней. На остывшем Марсе этот механизм не работает. На Венере работает. Но континентов, подобных земным, на ней нет. Потому что на Венере нет океанов, нет воды, нет даже льда, который лежал бы на базальтах.

Жидкая вода на поверхности оказалась только на одной планете, только на ней появились граниты, которые были включены в сложный процесс дифференциации вещества, начавшегося после массивной бомбардировки Протоземли астероидами и метеоритами. И стоило только появиться первой гранитной выплавке, как тут же из нее были «построены» первые континенты. Именно они, перемещаясь по Земле, подобно ледоколам, вспарывают ее недра до самого ядра. Только они управляют процессами возникновения или затухания потоков из самых глубин мантии. Не будь на Земле континентов, не было бы того целостного и упорядоченного механизма, который все перемешал внутри нашей планеты. С другой стороны, движение, твердых плит строго закономерно, и, однажды возникнув, они неминуемо должны были вновь и вновь образовывать суперконтененты, чтобы затем расходиться в разные стороны. Количество континентов, их форма могли быть произвольными, но, однажды образовавшись, они уже запустили современный геодинамический «котел» внутри Земли.

С этого времени начинается геологическая стадия развития Земли.

Геологические процессы можно разделить на два типа. С одной стороны, это подземные вулканические и иные силы, приводящие к излиянию лав и подъему или опусканию земной коры; с другой – процессы разрушения, эрозия горных пород, перенос их водами и ветром по земной поверхности.

Пока на Земле вода была только в парообразном состоянии, переноса горных пород практически не происходило. Вулканические горы еще не размывались, а пониженные места между вулканами не заполнялись осадками. С появлением на Земле жидкой воды впервые возникли осадочные породы, отлагавшиеся в неглубоких еще тогда морских водоемах. В результате поверхность планеты стала более ровной, поскольку высокие вулканы разрушались и постепенно исчезали с земной поверхности, если подземный очаг переставал работать. Хота поверхность планеты уже остыла, на небольшой глубине земные породы были по-прежнему разогреты и потому достаточно пластичны. В этот период земная кора еще не трескалась и крупных разломов не существовало.

Следующая стадия эволюции коры начинается 3-2 млрд. лет назад. К этому времени земная кора уже остыла на всю глубину (20–40 км) и приобрела необходимую хрупкость. В местах максимальных напряжений земная кора стала трескаться. Возникли глубинные разломы. Вдоль них образовались прогибы, где накапливались многокилометровые толщи осадков.

Геологи называют платформой область с двухъярусным строением: внизу – смятый в складки плотный фундамент; выше – полого лежащий рыхлый осадочный чехол. В пределах платформ выделяют два вида структур – щиты и плиты. Первые вплоть до настоящего времени испытывали поднятия; в их пределах осадочный чехол отсутствует. На щитах длительно (до миллиарда лет) идет размыв кристаллических пород фундамента, благодаря чему на дневную поверхность выходят породы с возрастом 2–4 млрд. лет.

Плитами называются пространства платформ, фундамент которых перекрыт осадочным слоем.

Второй класс структур земной коры – геосинклинали. Важнейшая отличительная их черта – много большая контрастность движений по сравнению с платформами. Образованию геосинклинального пояса предшествовало заложение системы разломов большей протяженности (тысячи километров) и глубокого заложения. В результате поверхность земного шара оказалась состоящей из «обломков» древних платформ, разделенных геосинклинальными поясами. Наиболее протяженным является Тихоокеанский пояс, обрамляющий с востока, севера и запада впадину Тихого океана. Следующий по величине – Средиземноморский пояс. Он начинается в районе Гибралтарского прогиба и протягивается через Средиземное море, Кавказ, Памир и Гималаи в Зондский архипелаг, где сливается с Тихоокеанским поясом. В пределах нашей страны находится большая часть Урало-Монгольского геосинклинального пояса. В него входят Урал, геосииклинальные структуры Казахстана, Тянь-Шаня, Алтая, Саян и большая часть Монголии. Этот пояс также стыкуется с Тихоокеанским. Кроме того, выделяют Атлантический и Арктический пояса, но они в значительной степени перекрыты океанами и на дневную поверхность выходят лишь их краевые части.

Между складчатыми поясами расположены платформы, которые обычно разделяются на две группы: северную и южную.

Северная именуется Лавразиатской. В нее входят три платформы: Североамериканская, занимающая большую часть континента Северной Америки и Гренландии; Восточно-Европейская, которая включает почти всю Европу (ее также называют Русской платформой). Сибирская, протягивающаяся от Енисея на западе до Алдана и Лены (на востоке).

Южная группа платформ именуется Гондванской. Геологи установили, что в конце палеозойской и в начале мезозойской эры все платформы южного полушария (Бразильская, Африканская, Индийская и Австралийская) развивались очень сходно – были близкие климатические условия, почти тождественные флора и фауна. Значит. 300–200 млн. лет назад платформы южного полушария составляли единый гигантский материк – Гондвану.

Третья стадия развития Земли до некоторой степени продолжается и сейчас, что подтверждается различными типами тектонических движений на континентах. Однако, по-видимому, с палеозойской эры, т.е. примерно 0,5-0,3 млрд. лет назад. Земля вступила в четвертую стадию эволюции, которую с полным правом можно именовать океанической. Важнейшей особенностью этой стадии жизни нашей планеты является уничтожение мощной континентальной коры и превращение ее в тонкую (5–7 км), океаническую.

Главной особенностью процесса океанообразования является то, что, начавшись, вероятно, в пределах относительно узкой, может быть линейной, зоны, он затем постепенно расширялся, захватив к настоящему времени пространство, превышающее площадь материков.

Какие глубинные условия определяли начало процесса океанообразования, остается пока неясным. Предполагают, что в основе этих процессов лежит разогревание Земли в результате радиоактивного распада.

Обширные глубоководные океанические равнины – это, очевидно, былые платформы. Недаром многие геологи по аналогии с континентами называют их талассократонами (опустившимися платформами). О сходстве океанических равнин с платформами материков свидетельствуют их огромные размеры, отсутствие в них каких-либо активных тектонических движений, например сейсмической деятельности.

Океаническую стадию следует рассматривать как завершение гигантского мегацикла в истории Земли, длившегося 4–5 млрд. лет. В течение этого периода в коре близ ее поверхности накапливались такие элементы, как кремнезем, щелочи, кальций, создавался гранитный слой, выделялась вода. Некоторое количество воды достигло земной поверхности, но большую ее часть, как губка, впитал в себя верхний слой мантии. Возник мощный слой обводненных пород. В океаническую стадию жизни Земли вода, наконец, была «выжата» на поверхность Земли. Может быть, впервые за всю многомиллиардную жизнь коры слагающие ее химические элементы расположились в закономерной последовательности: вверху самые легкие, ниже тяжелые и плотные – вода, йод ней кремнезем, еще ниже алюмосиликаты и внизу силикаты с высоким содержанием магния и железа.