
- •1. Передача информации между двумя оконечными устройствами. Тип соединения оконечных устройств
- •2. Основные определения: информация, сообщение, система связи, сигнал, алфавит.
- •3. Обобщенная структура схемы системы связи
- •4. Источники сообщения в системах связи. Вероятностный характер источников сообщений.
- •5. Форматирование информации. Форматирование текстовых данных. Существующие стандарты.
- •6. Передача сообщений по каналу, искажения, краевые искажения, дробление
- •7. Аналоговые источники сообщений. Преобразование аналоговых сигналов в цифровые. Квантование по уровню. Ошибка квантования.
- •8. Дискретизация аналоговых сигналов по времени. Понятие о теореме Котельникова.
- •9. Преобразование аналоговых сигналов в цифровые. Дискретизация по методу «выборка-хранение». (доработать)
- •10. Сигнал, как реализация процесса. Классификация процессов.
- •11. Классификация процессов. Детерминированные процессы. Гармонические и переходные непериодические процессы.
- •12. Полигармонические и непериодические процессы их спектральные характеристики.
- •13. Определение случайного процесса. Непрерывные и дискретные случайные процессы.
- •14. Измерение случайных процессов.
- •15. Числовые характеристики случайных процессов, их инженерно-физический смысл.
- •16.Законы распределения и основные характеристики случайных процессов
- •17. Автокорреляционная функция случайного процесса. Примеры автокорр. Функций.
- •18. Взаимная корреляционная функция случайных процессов. Примеры применения корреляционных характеристик.
- •19. Усреднение по ансамблю и по времени. Эргодическое свойство случайных процессов.
- •20. Стационарность случайных процессов. Стационарность в широком и узком смыслах.
- •21. Информационные модели сигналов. Формула Хартли.
- •22. Информационные модели сигналов. Формула Шеннона.
- •23. Энтропия источника сообщений. Свойства энтропии источника дискретных сообщений.
- •24. Избыточность при передаче сообщений. Роль избыточности при передаче информации.
- •25. Математические модели сигналов. Временное и частотное представление сигналов.
- •26. Ряд Фурье по произвольной ортогональной системе функций.
- •31. Спектральные характеристики непериодического сигнала. Прямое и обратное преобразования Фурье.
- •32. Оценивание спектральной плотности с помощью дпф
- •33. Дискретное преобразование Фурье (дпф). Гармонический анализ.
- •34. Примеры ортогональных базисов. Функции Уолша.
- •35. Модуляция. Зачем она нужна
- •36. Амплитудная модуляция.Спектр ам сигнала. Примеры модуляторов.
- •37 Амплитудно-модулируемый сигнал сложной формы, его спектр.
- •38 Демодуляция ам сигнала. Работа простейшего амплитудного детектора.
- •43. Спектр колебаний с угловой модуляцией
- •44. Сравнение методов амплитудной и угловой модуляций
- •45. Двоичное представление информации. Механизм восстановления двоичных импульсов.
- •46. Спектральные характеристики случайных процессов.
- •47. Преобразование кодов.
- •48. Корректирующие коды. Ход Хемминга
- •49. Неравномерные коды. Код Хаффмана.
- •50. Неравномерные коды. Код Шеннона-Фано
- •51. Дискретизация аналоговых сигналов по времени. Понятие о теореме котельникова.
- •52. Спектр прямоугольного сиганала
- •53. Свойства энтропии источника дискретных сообщений.
31. Спектральные характеристики непериодического сигнала. Прямое и обратное преобразования Фурье.
Изобразим периодический сигнал x(t). Оставим неизменной функцию в интервале τ, а период T0 устремим в бесконечность T0→∞. Получим ω0=2π/T0→0, Ак→0. При этом расстояние между составляющими спектра становится бесконечно малым, бесконечно малой становится и амплитуда каждой гармоники. Понятие «амплитудный спектр» заменяется понятием «спектральная плотность амплитуд» S (х) с размерно-
стью амплитуды на единицу частоты В/рад, или S(f) В/Гц.
В отличие от спектра периодических колебаний, спектр которых является дискретным, спектр непериодических колебаний – сплошной.
Между непериодическим сигналом x(t) и его спектром S( ω) существует
связь в виде преобразований Фурье:
S(ω) называется также комплексной спектральной функцией, эта функция четная, убывающая с ростом частоты.
- Прямое преобразование
Фурье (спектральная плотность мощности).
Физический смысл спектральной плотности мощности – комплексная функция частоты одновременно является несущей информацию об амплитуде и фазе элементарных синусоид.
х(t)
=
- Обратное преобразование Фурье. По
нему можно восстановить временной
сигнал.
32. Оценивание спектральной плотности с помощью дпф
ДПФ
является комплексной последовательностью
,
каждый отсчет которой в общем случае
состоит из вещественной и мнимой
компонент:
, (5.22)
и может быть представлен в полярной форме как
,
где
модуль
,
фазовый угол. На практике фазовый угол
представляет интерес для узкого класса
задач, поэтому в основном анализ ведется
по отсчетам модуля
.
Квадрат модуля ДПФ как функция частоты
используется для оценки истинной
спектральной плотности
процесса, реализацией которого является
сигнал
:
,
, (5.23)
где
,
опорные частоты ДПФ, определяемые
формулой (5.12). Заметим, что специалисты-практики
спектром часто называют именно эту
действительную функцию частоты.
Можно
показать, что если ДПФ вычисляется по
формуле (5.23), то сумма отсчетов плотности
по индексам
приблизительно равна выборочной
дисперсии временного ряда
,
т. е.
. (5.24)
Нормированная
спектральная плотность
вычисляется по одной из формул:
, (5.25
а)
, (5.25
б)
.
В
большинстве практических задач анализу
подвергаются действительные сигналы
,
ДПФ которых обладает комплексно-сопряженной
симметрией, согласно формуле (5.16).
Следовательно, для действительного
сигнала значения спектральной плотности
симметричны относительно точки
:
.
Поэтому
имеет смысл определять отсчеты
спектральной плотности действительного
ряда только для индексов
.
33. Дискретное преобразование Фурье (дпф). Гармонический анализ.
Предположим,
что непрерывная реализация
представлена N
эквидистантными
значениями с интервалом дискретизации
.
Поскольку при рассмотрении финитного
преобразования Фурье мы задавали
интервал определения
как
,
моменты
удобно индексировать, начиная с
.
Тогда последовательность отсчетов
запишется в виде
,
.
Дискретная
аппроксимация интеграла (по методу
прямоугольников) в формуле
при произвольном значении f
есть
. (5.11)
Для расчета спектра выбираем дискретные значения частоты
,
. (5.12)
Формула (5.11) дает на этих частотах следующие составляющие Фурье
,
, (5.13)
причем
интервал
внесен в значение
,
чтобы избавиться от множителя перед
знаком суммы. Подставив в соотношение
(5.13) выражение для
из (4.12), получим формулу для дискретного
преобразования Фурье
,
. (5.14)
Внимание,
это важно!
Дискретное преобразование Фурье (ДПФ)
применяется для оценивания спектра,
задаваемого соотношением (5.1). Частоты,
определяемые соотношением (5.12), (точки
на оси частот) называются опорными
частотами
ДПФ, а
промежутки
(интервалы частотной оси) между
последовательными частотами ДПФ –
бинами ДПФ.
Формула (4.14) часто записывается в виде
,
где ДПФ{} оператор ДПФ.
Свойства ДПФ.
Последовательность периодически повторяется через N значений:
,
где
.
(5.15)
ДПФ действительных временных рядов обладает свойством комплексной симметрии, которое записывается в виде
,
.
Учитывая (5.15), последнее соотношение можно представить как
,
, (5.16)
другими
словами, частоты выше
можно рассматривать (теоретически) как
отрицательные.
Значение
для действительных последовательностей равно
, (5.17)
, (5.18)
где
выборочное среднее величин
.
Свойство линейности ДПФ формулируется аналогично (5.5), т. е.
,
где
a
и b
постоянные коэффициенты,
и
два разных сигнала одина
ковой длины.
.
(5.5)
Гармонический анализ.Под гармоническим анализом понимают практическое нахождение спектральных характеристик сигнала( Есть сигнал надо найти его спектр). Нахождение коэффициентов Фурье и построение спектров.
x(t)= - Тригонометрическая формула , -комплексная форма,
- Прямое преобразование Фурье (спектральная плотность мощности).
х(t) = - О обратное преобразование Фурье.
ak
=
,
когда мы находим вторую гармонику берем i=2