
- •Ответы к экзамену по математическому анализу
- •Основные определения и задачи теории дифференциальных уравнений. Дифференциальные уравнения первого порядка. Теорема и задача Коши.
- •Дифференциальные уравнения с разделяющимися переменными.
- •Однородные дифференциальные уравнения первого порядка.
- •Линейные дифференциальные уравнения первого порядка и уравнения Бернулли. Дифференциальные уравнения в полных дифференциалах. Линейные дифференциальные уравнения первого порядка
- •5. Дифференциальные уравнения второго и высших порядков.
- •6. Дифференциальные уравнения второго порядка, допускающие понижение порядка.
- •7. Линейные дифференциальные уравнения второго порядка. Однородные уравнения. Определитель Вронского. Фундаментальная система решений.
- •8. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами.
- •9. Решение линейных неоднородных дифференциальных уравнений второго порядка с постоянными коэффициентами и специальной правой частью.
- •10.Решение линейного дифференциального уравнения 2-го порядка методом Лагранжа.
- •11. Системы дифференциальных уравнений. Решение нормальной линейной системы методом характеристического уравнения.
- •– Линейные однородные системы дифференциальных уравнений – Линейные неоднородные системы дифференциальных уравнений
- •Линейные однородные системы дифференциальных уравнений
- •Что значит решить систему дифференциальных уравнений?
- •Линейные неоднородные системы дифференциальных уравнений
- •Метод характеристического уравнения (метод Эйлера)
- •12. Числовые ряды: основные определения. Геометрическая прогрессия как пример числового ряда. Основные определения и понятия.
- •13. Гармонический ряд. Необходимый признак сходимости ряда. Признаки сравнения для определения сходимости рядов с положительными членами. Числовые ряды
- •Необходимый признак сходимости ряда.
- •Достаточные признаки сходимости ряда с положительными членами
- •1. Признак Даламбера
- •2. Интегральный признак Коши
- •3. Признак сравнения рядов
- •14. Признаки сходимости Даламбера и Коши для рядов с положительными членами. Обобщенно гармонический ряд. Признак Даламбера. Радикальный признак Коши.
- •Обобщённо гармонический ряд. Ряд Дирихле:
- •Знакопеременный ряд:
- •15. Знакочередующиеся ряды. Признак Лейбница. Абсолютная и условная сходимость.
- •16. Функциональные ряды. Точки и область сходимости. Функциональные ряды
- •17. Степенные ряды и область сходимости. Степенные ряды
- •18. Разложение функций в ряды Тейлора и Маклорена.
- •19. Применения рядов Тейлора для приближенных вычислений интегралов и решений дифференциальных уравнений.
- •20. Ряд Фурье и его коэффициенты.
- •21. Разложение функции в ряд Фурье. Теорема Дирихле.
- •22. Определение и свойства двойного интеграла.
- •23. Вычисление двойных интегралов.
- •24. Замена переменных в двойном интеграле. Полярные координаты.
- •25.Приложения двойного интеграла.
- •26. Определение тройного интеграла.
- •27. Вычисление тройного интеграла.
- •28. Замена переменных в тройном интеграле. Цилиндрические координаты.
- •29. Вычисление тройного интеграла в сферических координатах.
- •Решение
Обобщённо гармонический ряд. Ряд Дирихле:
Обобщенным гармоническим рядом (или рядом Дирихле) называют ряд:
Обобщенный гармонический ряд расходится при α≤1 и сходится при α>1.
Сумма обобщённого гармонического ряда порядка α равна значению дзета-функции Римана:
Для
чётных это значение явно выражается
через число пи, например,
, а уже для α=3 его значение аналитически
неизвестно.
Знакопеременный ряд:
В отличие от гармонического ряда, у которого все слагаемые берутся со знаком «+», ряд
сходится по признаку Лейбница. Поэтому говорят, что такой ряд обладает условной сходимостью. Его сумма равна натуральному логарифму 2:
Эта формула — частный случай ряда Меркатора (англ.), ряда Тейлора для натурального логарифма.
Похожий ряд может быть получен из ряда Тейлора для арктангенса:
Это известно как ряд Лейбница.
15. Знакочередующиеся ряды. Признак Лейбница. Абсолютная и условная сходимость.
Числовой ряд, содержащий бесконечное множество положительных и бесконечное множество отрицательных членов, называется знакопеременным. Частным случаем знакопеременного ряда являетсязнакочередующийся ряд, то есть такой ряд, в котором последовательные члены имеют противоположные знаки. Признак Лейбница Для знакочередующихся рядом действует достаточный признак сходимости Лейбница. Пусть {an} является числовой последовательностью, такой, что 1. an+1 < an для
всех n;
2. Тогда
знакочередующиеся ряды Абсолютная и условная сходимость Ряд |
Пример 1 |
|
Исследовать
на сходимость ряд Решение. Применим достаточный признак Лейбница для знакочередующихся рядов. Получаем поскольку |
Пример 2 |
|
Исследовать
на сходимость ряд Решение. Попробуем применить признак Лейбница: Видно, что модуль общего члена не стремится к нулю при n → ∞. Поэтому данный ряд расходится. |
Пример 3 |
Определить,
является ли ряд Решение. Применяя признак Даламбера к ряду, составленному из модулей соответствущих членов, находим Следовательно, данный ряд сходится абсолютно. |
Пример 4 |
Определить,
является ли ряд Решение. Сначала
воспользуемся признаком Лейбница и
найдем предел Таким образом, исходный ряд расходится. |
Пример 5 |
|
Исследовать на сходимость ряд Решение. Общий
член данного ряда равен Следовательно. исходный ряд сходится абсолютно. |
Пример 6 |
Исследовать,
является ли ряд Решение. Применяя признак Лейбница, видим, что ряд является сходящимся: Рассмотрим
теперь сходимость ряда Следовательно исходный ряд сходится условно. |
Пример 7 |
Определить,
является ли ряд Решение. Сначала применим признак Лейбница: Следовательно,
данный ряд сходится. Выясним, является
ли эта сходимость абсолютной или
условной. Воспользуемся предельным
признаком сравнения и сравним
соответствующий ряд из модулей Поскольку ряд , составленный из модулей, расходится, то исходный знакочередующийся ряд является условно сходящимся. |