
- •Физико-химические свойства воды
- •2.Биологическая роль воды в живых организмах.
- •3.Формы воды в живых организмах.
- •4.Минеральные вещества и их биологическая роль
- •5.Биологические функции белковых веществ.
- •6. Составные части белковых веществ. Аминокислоты.
- •Связи аминокислот в белковой молекуле, структура белковой молекулы.
- •Свойства белковых веществ.
- •Классификация белковых веществ, характеристика отдельных представителей простых белков.
- •Строение нуклеопротеидов.
- •Атф и ее роль в живых организмах.
- •Характеристика других сложных белковых веществ.
- •Функции гликопротеинов:
- •Пример металлопротеинов:
- •Ферменты и их химические строение, основные коферменты. (над, надф, коа)
- •Механизм действия ферментов.
- •Условия оптимального действия ферментов.
- •Классификация ферментов.
- •Экстрактивные азотистые вещества.
- •Общая схема обмена белковых веществ.
- •Дезаминирование аминокислоты
- •Переаминирование аминокислот.
- •Декарбоксилирование аминокислот.
- •Образование спецефичиских веществ (гормонов).
- •Углеводы и их общая характеристика.
- •Моносахариды и характеристика отдельных представителей.
- •Дисахариды и полисахариды, характеристика отдельных представителей.
- •Производные углеводов.
- •Анаэробный обмен углеводов.
- •Аэробный обмен углеводов.
- •Липиды и их химическое строение.
- •Предельные жирные кислоты.
- •Непредельные жирные кислоты.
- •Жироподобные вещества:фосфолипиды, стериды, стетриты, сфингомиелины и воски.
- •Обмен липидов.
- •Водорастворимые витамины.
- •Жирорастворимые витамины
- •Основные гормоны.
Механизм действия ферментов.
Скорость ферментативной реакции зависит от концентрации субстрата [S] и количества присутствующего фермента. Эти величины определяют, сколько молекул фермента соединится с субстратом, и именно от содержания фермент-субстратного комплекса зависит скорость реакции, катализируемой данным ферментом. В большинстве ситуаций, представляющих интерес для биохимиков, концентрация фермента очень мала, а субстрат присутствует в избытке.
Выяснение механизмов действия ферментов во всех деталях – дело будущего, однако некоторые важные их особенности уже установлены. Каждый фермент имеет один или несколько активных центров, с которыми и связывается субстрат. Эти центры высокоспецифичные, т.е. «узнают» только «свой» субстрат или близкородственные соединения.
Условия оптимального действия ферментов.
Температура. Ферменты теряют активность при нагревании; при температуре от 50 до 60° С большинство ферментов быстро инактивируются. Инактивация ферментов необратима, так как после охлаждения активность не восстанавливается. Этим можно объяснить, почему непродолжительное воздействие высокой температуры убивает большинство организмов: часть их ферментов инактивируется и обмен веществ продолжаться не может. Известно несколько исключений из этого правила. Некоторые виды примитивных растений — сине-зеленых водорослей — живут в горячих источниках, например в источниках Йеллоустонского национального парка, где температура воды достигает почти 100° С. Эти водоросли обусловливают яркую окраску травертиновых террас вокруг горячих источников. При температурах ниже той, при которой наступает инактивация ферментов (около 40° С), скорость большинства ферментативных реакций, как и скорость других химических реакций, примерно удваивается с повышением температуры на каждые 10° С.
Замораживание обычно не приводит к инактивации ферментов; при низких температурах ферментативные реакции идут очень медленно или не идут вовсе, но при повышении температуры до нормальной каталитическая активность возобновляется.
Кислотность. Ферменты чувствительны к изменениям pH, т. е. к изменению кислотности или щелочности среды. Пепсин — фермент, переваривающий белки, выделяемый слизистой оболочкой желудка, — замечателен тем, что он активен только в очень кислой среде и лучше всего действует при pH 2. Трипсин, расщепляющий белки и выделяемый поджелудочной железой, служит примером фермента, проявляющего оптимальную активность в щелочной среде, при pH около 8,5. Большинство внутриклеточных ферментов имеют оптимумы pH близ нейтральной точки, а в кислой или щелочной среде их активность значительно ниже; под действием сильных кислот и оснований они необратимо инактивируются.
Классификация ферментов.
• Гр 1: Оксидоредуктазы, катализирующие окисление или восстановление. Пример: каталаза, алкогольдегидрогеназа • Гр 2: Трансферазы, катализирующие перенос химических групп с одной молекулы субстрата на другую. Среди трансфераз особо выделяют киназы, переносящие фосфатную группу, как правило, с молекулы АТФ. • Гр 3: Гидролазы, катализирующие гидролиз химических связей. Пример: эстеразы, пепсин, трипсин, амилаза, липопротеинлипаза • Гр 4: Лиазы, катализирующие разрыв химических связей без гидролиза с образованием двойной связи в одном из продуктов. • Гр 5: Изомеразы, катализирующие структурные или геометрические изменения в молекуле субстрата. • Гр 6: Лигазы, катализирующие образование химических связей между субстратами за счет гидролиза АТФ. Пример: ДНК-полимераза Будучи катализаторами, ферменты ускоряют как прямую, так и обратную реакции, поэтому, например, лиазы способны катализировать и обратную реакцию — присоединение по двойным связям.