
- •1. Требования к машинам. Задачи курса Тмм и м.
- •2. Задачи проектирования машин. Критерии и стадии проектирования в ескд. Содержание технического предложения.
- •3. Машины и их классификация.
- •4. Основные сведения из теории производительности машин.
- •5. Машинный агрегат. Общее устройство.
- •6. Назначение, устройство и основные виды механизмов.
- •7. Строение механизмов. Кинематические пары. Подвижность кинематических пар и механизмов.
- •8. Стадии движения машинного агрегата. Установившееся движение. Энергетические соотношения при установившемся движении машин. Цикловой кпд.
- •Вопрос 9
- •Вопрос 10
- •Вопрос 11
- •Вопрос 12
- •Вопрос 13 (с. 69-72)
- •Вопрос 14 (с.68)
- •Вопрос 15
- •Вопрос 16 (с.37-41)
- •25. Условие соседства в эпициклическом механизме.
- •26. Условия сборки в эпициклическом механизме.
- •27. Основы синтеза планетарных передач по методу сомножителей.
- •28. Управление машинами-автоматами с помощью механизмов. Виды кулачковых механизмов.
- •Классификация кулачковых механизмов
- •30. Параметры закона движения кулачкового механизма.
- •34.Угол давления и его связь с основными размерами кулачкового мех-ма.
- •35.Учет угла давления при синтезе кулачкового механизма с поступательным и вращательным движением толкателя.
- •36.Профилирование кулачка по методу обращения движения.
- •37.Обобщённая инертность машинного агрегата.
- •38.Вычисление передаточной функции методами планов и диаграмм.
- •39.Вычисление передаточной функции аналитич. Методом.
- •40.Исследование движения машинного агрегата с помощью диаграммы энергомасс.
- •41. Постановка задачи о регулировании движения машинного агрегата.
- •42. Назначение маховика и определение его момента инерции.
- •44. Цель, теоретические основы и порядок силового исследования машин. Статически определимые кинематические цепи.
- •45. Определение параметров закона движения главного вала машинного агрегата.
- •46. Учёт сил инерции звеньев машин.
- •47. Порядок уточнения кпд машины и интенсивность износа кинематических пар.
- •48. Уравновешивание вращающихся масс (роторов)
- •49. Полное статическое уравновешивание рычажных механизмов.
45. Определение параметров закона движения главного вала машинного агрегата.
Режимы движения механизмов
В зависимости от того какую работу совершают внешние силы машины различают три режима движения: разгон (разбег, пуск), торможение (выбег, останов) и установившееся движение (рис. 12.3).
Установившимся движением механизма называют такое движение, при котором его обобщенная скорость и кинетическая энергия являются периодическими функциями времени. Минимальный промежуток в начале и в конце которого повторяются значения кинетической энергии и обобщенной скорости механизма – называют временем цикла установившегося движения.
Для
идеальной механической системы, в
которой нет потерь энергии и звенья
абсолютно жесткие при получении уравнений
движения механизма можно воспользоваться
теоремой об изменении кинетический
энергии: разность энергии за какой либо
промежуток времени равна работе сил за
тот же промежуток времени.
,где
Ад.с.
– работа движущих сил; Ап.с.
– работа сил производственных
сопротивлений; Ав.с.
– работа сил вредных сопротивлений
(трения и внешней среды); АG
– работа сил веса.
Для
режима разгона: i0
= 0, Ап.с.
= 0, тогда:
.
Работа движущих сил при разгоне расходуется кинетическую энергию, работу сил вредных сопротивлений и веса.
При
установившемся движении за каждый цикл
движения работа всех внешних сил равна
нулю
.
Для
режима выбега: i
= 0, Ад.с.
= 0, Ап.с.
= 0 тогда:
.
Запасённая кинетическая энергия при выбеге тратится на преодоление работ сил вредных сопротивлений и веса.
Режимы разгона и выбега называют режимами неустановившегося движения.
Уравнение движения механизма в дифференциальном виде
Содержит вторые производные от координат по времени. Изменение кинетической энергии механизма равно приращению работ сил действующих на механизм:
.
В случае если начальное звено совершает вращательное движение: .
Тогда: , ,
Преобразуем второе слагаемое с учетом: .
Подставляя получаем: .
В случае если Jпр = const (маховое колесо, ротор двигателя и т.п.) получаем (второй закон Ньютона для вращательного движения).
46. Учёт сил инерции звеньев машин.
Силы инерции звеньев
Силы инерции звеньев рассматриваются как реакции звена на изменение его скорости по величине и направлению. Существование сил инерции обусловлено двумя обстоятельствами: фактом наличия у звеньев массы и фактом движения звеньев, сопровождающегося в общем случае ускорениями отдельных точек и всего звена в целом, так как известно из теоретической механики, что мерой сил инерции является произведение массы на ускорение.
Из
курса теоретической механики известно,
что систему сил инерции в общем случае
можно привести к силе – главному вектору
сил инерции
приложенного в центре масс s
звена (рис. 11.6) и к паре сил, момент которой
называется главным моментом сил инерции
.
Рис. 11.6
Главный
вектор сил инерции определяют по формуле:
.
Главный
момент сил инерции определяют по
формуле:
,
где m – масса звена, кг; аs – ускорение цента масс, м/с2; Js – момент инерции звена относительно оси проходящей через центр масс перпендикулярной плоскости движения, кг/м2; - угловое ускорение звена, с-2.
Знак «» указывает на то, что векторы и соответственно направлены противоположно аs и .