
- •Сокращения
- •Введение
- •1Виды сигналов и цепей
- •1.1Континуальные и дискретные сигналы
- •1.2Линейная цепь с постоянными параметрами
- •1.3Линейная цепь с переменными параметрами
- •1.4Нелинейная цепь
- •2Линейная фильтрация сигнала
- •2.1Классификация фильтров
- •2.2Частотные характеристики фильтров
- •2.3Фильтры второго порядка
- •Фильтры нижних частот
- •Фильтры верхних частот
- •Полосно-пропускающие фильтры
- •Частотно-заграждающие фильтры
- •Частотно-выделяющие фильтры
- •Всепропускающие фильтры
- •2.4Работа т-образного фильтра
- •3Цифровая обработка сигнала
- •3.1Структура цифровых ких и бих фильтров
- •3.2Интегрирование уравнений методом Эйлера
- •3.3Интегрирование уравнений методом Адамса
- •3.4Интегрирование системы уравнений
- •3.5Построение цифровых бих фильтров
- •4Аппаратные средства aTmega 8535 avr
- •4.1Функциональная схема архитектуры
- •4.2Специальные функции контроллера
- •4.3Основные характеристики периферии
- •4.4Память программ и данных
- •4.5Тактовый генератор и таймеры
- •4.6Периферийные устройства
- •4.7Модуль прерываний
- •4.8Порты контроллера
- •4.9Режимы пониженного энегопотребления
- •7.2Вторая часть задания
- •7.3Третья часть задания
- •Заключение Литература
- •Термины и определения
- •Линейные пространства
- •Дифференциальные уравнения
- •Комплексные числа
- •Гармонические функции
- •Законы Ома и Кирхгофа
- •Переходные процессы
- •Сигналы с ограниченной полосой частот
- •Средства пакета MathCad
- •Интерфейс MathCad
- •Построение выражений и их вычисление
- •Стандартные функции
- •Ввод греческих букв
- •Ввод текста
- •Варианты заданий
- •Пример выполнения задания
- •Частотные характеристики фильтра
- •Система дифференциальных уравнений
- •Составление системы уравнений
- •Решение системы средствами Odesolve
- •Система разностных уравнений
- •Решение системы разностных уравнений
- •Сравнение полученных решений
- •Дифференциальное уравнение 3-го порядка
- •Получение дифференциального уравнения
- •Сравнение частотных характеристик
- •Решение уравнения средствами Odesolve
- •Разностное уравнение
- •Решение разностного уравнения
- •Сравнение полученных решений
- •Программирование в среде Code Vision avr
- •Решение системы по разностной схеме
- •Результаты решения системы
- •Выводы по проделанной работе
Переходные процессы
Переходные (нестационарные) процессы возникают в результате коммутаций, происходящих в электрических цепях. Под коммутацией понимают различные включения, выключения, переключения пассивных и активных ветвей и элементов электрической цепи, приводящие к изменению схемы или ее параметров. Считают, что коммутация совершается мгновенно. Для момента коммутации существуют следующие правила.
Ток и магнитный поток в ветви с индуктивным элементом не могут изменяться скачком, и в момент коммутации равны тем значениям, которые они имели непосредственно перед коммутацией. Условия непрерывности тока и магнитного потокосцепления в цепи с индуктивным элементом Рис. А.:
,
,
.
Рис. А.4 – Схема коммутации с индуктивностью
Напряжение и заряд на емкостном элементе не могут изменяться скачком, и в момент коммутации равны тем значениям, которые они имели непосредственно перед коммутацией. Условия непрерывности напряжения и заряда в цепи с емкостным элементом Рис. А.:
,
,
.
Рис. А.5 – Схема коммутации с емкостью
Независимые начальные условия (значение тока или потока в индуктивном и напряжения или заряда на емкостном элементах в момент коммутации) определяются по законам коммутации.
Зависимые начальные условия (значения токов и напряжений в момент коммутации) определяются по схеме, образованной после коммутации по законам Кирхгофа с учетом законов коммутации.
Независимые и зависимые начальные условия схемы, представленной на Рис. А. будут следующие:
независимые начальные условия для тока ;
независимые начальные условия для напряжения
.
Рис. А.6 – Зависимые начальные условия
Для
определения зависимых начальных условий
используем законы Кирхгофа и определенные
ранее значения тока и напряжения
,
.
Для цепей, образованных после коммутации,
составим уравнения Кирхгофа с учетом
значений
,
.
Полученную
систему алгебраических уравнений решим
относительно искомых величин
,
,
.
зависимые начальные условия для токов , ;
зависимые
начальные условия для производной
.
Для расчета переходных процессов на цифровых вычислительных машинах используют, как наиболее удобный, метод переменных состояний. Для после коммутационной схемы, вместо одного неоднородного дифференциального уравнения n-го порядка, решают n дифференциальных уравнений первого порядка относительно выбранных переменных. Переменными могут быть напряжения на конденсаторах, токи в индуктивных катушках, и другие величины, по начальным состояниям которых (и входным воздействиям) определяют искомые переходные функции.
В
качестве примера рассмотрим переходный
процесс в последовательном колебательном
контуре (Рис. А.). Ток в схеме является
общим для всех элементов схемы. Считаем
начальные условия нулевыми
,
.
В схеме до коммутации нет запаса энергии.
Независимые
начальные условия схемы будут следующие
,
,
.
Зависимые
начальные условия схемы вычисляются
из следующих соображений
.
Интегро-дифференциальное уравнение контура, составленное по второму закону Кирхгофа и закону Ома, будет выглядеть так:
.
Дифференцируя левую и правую части этого уравнения, получим следующее дифференциальное уравнение второго порядка
.
Система из двух дифференциальных уравнений первого порядка будет выглядеть так:
.
Такая система дифференциальных уравнений, решаемая численными методами, может использоваться микропроцессорной системой, для обработки входного сигнала в реальном времени.