
- •5.Законы сохранения массы и энергии. Законы равновесия системы. Принцип движущей силы и законы переноса массы и энергии.
- •7.Принцип оптимизации проведения процесса.
- •9.Современные методы исследования процессов и аппаратов. Понятие о подобии.
- •10.Оборудование для мокрой очистки газов. Схемы. Назначение, устройство, принцип действия и область применения.
- •11.Три теоремы подобия. Пи - теорема.
- •14.Классификация теплообменников. Кожухотрубный теплообменник. Назначение, устройство и область применения.
- •15.Классификация неоднородных систем. Методы разделения неоднородных систем.
- •16.Конвективные сушилки: туннельные и ленточные. Назначение, устройство и принцип действия.
- •17.Кинематика отстаивания. Формула стокса. Влияние формы частиц и их концентрации на процесс отстаивания.
- •18.Кондуктивные сушилки. Назначение, устройство и принцип действия.
- •19.Центрифугирование
- •20.Выпарной аппарат с естественной циркуляцией. Назначение устройство и принцип действия.
- •21.Фильтрование. Виды фильтрования.
- •22.Теплообменники смешения. Назначение, устройство и область применения.
- •23.Теория фильтрования с образованием осадка.
- •24.Барабанные сушилки. Назначение, устройство и принцип действия.
- •25.Теория фильтрования с закупориванием пор.
- •26.Распылительные сушилки. Назначение, устройство и принцип действия.
- •27.Мембранные методы фильтрования.
- •28.Кристаллизаторы. Назначение, устройство и принцип действия.
- •29.Перемешивание. Способы перемешивания в жидкой среде.
- •30.Адсорберы с псевдоожиженным слоем адсорбента. Назначение, устройство и принцип действия.
- •32.Гидроциклоны и аэроциклоны. Назначение, устройство, принцип действия и область применения.
- •33.Перемешивание пластичных масс и сыпучих материалов.
- •34.Фильтры для неоднородных газовых систем. Схемы. Назначение, устройство, принцип действия и область применения.
- •35.Процессы нагревания и охлаждения. Теплопроводность, теплоотдача, теплопередача.
- •36.Электроосаждение и конструкция электрофильтра. Назначение, устр-во, принцип действия и область применения.
- •37.Выпаривание и область его применения. Изменение свойств раствора при сгущении.
- •3 8.Виды центрифуг и их схемы. Назначение, устройство, принцип действия и область применения. Производительность центрифуги.
- •39.Способы выпаривания.
- •44. Пневматические сушилки с псевдоожиженным слоем. Назначение, устройство, принцип действия и область применения.
- •46.Механические адсорберы.
- •47.Движущая сила и основное уравнение массопередачи. Основные законы мп.
- •48.Пленочные выпарные аппараты. Назначение, устройство, область применения и принцип действия.
- •49.Равновесие фаз при массообменных процессах, материальный баланс масообмена, уравнение рабочей линии.
- •51.Критериальное уравнение диффузии.
- •52. Шахтные сушилки. Назначение, устройство, принцип действия и область применения.
- •53. Виды сорбционных процессов, абсорбция, основные закономерности процессов.
- •59. Теоретические основы перегонки
- •60 Батарейный циклон и мультигидроциклон.
- •73. Методы кристаллизации
- •76. Аппараты с псевдоожиженным слоем
- •77. Методы экстракции
- •78. Адсорберы с неподвижным слоем адсорбера.
- •79. Способы сортированИя сыпучих материалов. Ситовой анализ.
11.Три теоремы подобия. Пи - теорема.
Первую теорему подобия можно формулировать так: при подобии процессов равны все критерии подобия.
Вторая теорема подобия (теорема Федермана—Бэкингема)
утверждает, что результаты опытов следует представлять в виде зависимостей между критериями. Функциональная зависимость между критериями подобия называется критериальным уравнением. Критериальные уравнения описывают всю группу подобных процессов. Это обстоятельство имеет большое практическое- значение и позволяет моделировать промышленный объект на подобной лабораторной модели.
Вид критериального уравнения определяется экспериментальным путем. Во многих случаях эта зависимость представляется в виде степенных функций.
Третья теорема подобия (теорема М. В. Кирпичева, А. А. Гухмана) гласит, что критериальные уравнения применимы только для подобных процессов. Явления подобны, если их определяющие критерии численно равны, а следовательно, равны и определяемые критерии.
В заключение можно констатировать, что исследование процессов методом теории подобия состоит из получения математического описания процесса с помощью дифференциальных уравнений и условий однозначности, преобразования этих дифференциальных уравнений (или дифференциального уравнения), как показано выше, в критериальное уравнение и нахождения конкретного вида этого уравнения на основании экспериментального изучения процесса. ПИ теорема На вопрос о числе критериев необходимых для описания процессов в обобщенном виде отвечает так называемая пи теорема:
Всякое уравнение связывающее N физических и геометрических величин, размерность которых выражается через n основных единиц измерения , может быть преобразовано в уровнение подобия π = N – n.
π–теорема позволяет определить число критериев, необходимых для описания процесса
12.МЕШАЛКИ. НАЗНАЧЕНИЕ, УСТР-ВО, ПРИНЦИП ДЕЙСТВИЯ И ОБЛАСТЬ ПРИМЕНЕНИЯ. Мешалка представляет собой комбинацию лопастей, насаженных на вращающийся вал. Все перемешивающие устройства, применяемые в пищевых производствах, можно разделить на две группы: в первую группу входят лопастные, турбинные и пропеллерные, во вторую — спец-е — винтовые, шнековые, ленточные, рамные, ножевые и другие, служащие для перемешивания пластичных и сыпучих масс. По частоте вращения рабочего органа перемешивающие устройства делятся на тихо- и быстроходные. Лопастные (а,б) ленточные, якорные и шнековые мешалки относятся к тихоходным: частота их вращения составляет 30...90 мин"1, окружная скорость на конце лопасти для вязких жидкостей— 2...3 м/с. Преимущества лопастных мешалок — простота устройства и невысокая стоимость. К недостаткам относится создаваемый слабый осевой поток жидкоси что не обеспечивает полного перемешивания во всем объемосмесителя. Усиление осевого потока достигается при наклоне лопастей под углом 30° к оси вала. Якорные мешалки имеют форму днища аппарата. Их применяют при перемешивании вязких сред. Эти мешалки при перемешивании очищают стенки и дно смесителя от налипающих загрязнений.
Шнековые мешалки имеют форму винта и применяются, как и ленточные, для перемешивания вязких сред. К быстроходным относятся пропеллерные и турбинные мешалки: частота их вращения составляет от 100 до 3000 мин' при окружной скорости 3.. 20 м/с. Пропеллерные мешалки (в) изготовляют с двумя или тремя пропеллерами. Они обладают насосным эффектом и используются для создания интенсивной циркуляции жидкости. Применяются для перемешивания жидкостей вязкостью до 2 Пас. Турбинные мешалки (г,д,е) изготовляют в форме колес турбин с плоскими, наклонными и криволинейными лопастями. Они бывают открытого и закрытого типов. Закрытые мешалки имеют два диска с отверстиями в центре для прохода жидкости. Для одновременного создания радиального и осевого потоков применяют турбинные мешалки с наклонными лопастями. Турбинные мешалки обеспечивают интенсивное перемешивание во всем рабочем объеме смесителя. Для уменьшения кругового движения жидкости и образования воронки в смесителе устанавливаются отражательные перегородки. Турбинные мешалки применяют при перемешивании жидкостей вязкостью до 500 Па-с, а также грубых суспензий. Основные элементы типового смесителя с перемешивающим устройством — корпус с крышкой, привод и мешалки (рис.). Наиболее широко применяют выносной электрический привод с вертикальным валом. Бывают также приводы с горизонтальным и боковым расположением вала. Возможно верхнее и нижнее расположение вертикального привода по отношению к смесителю. Рис.Типы мешалок:а-3хлопастная, б-2хлопастная, в-пропеллерная, г-открытая турбинная, д-открытая турбинная с наклонными лопастями, е-закрытая турбинная.
13.УСТАНОВЛЕНИЕ ВИДА КРИТЕРИЕВ, ВХОДЯЩИХ В УРАВНЕНИЕ ПОДОБИЯ. ПРИМЕРЫ.
Критерии подобия носят названия по фамилиям выдающихся ученых, известных своими работами в соответствующей области наук. Полученный выше критерий характеризует механическое подобие и называется критерием Ньютона.
Получение критериев подобия из дифференциального уравнения сводится к следующим операциям: 1) составляется дифференциальное уравнение процесса; 2) дифференциальное уравнение приводится к безразмерному виду делением обеих частей уравнения на правую или левую часть или делением всех слагаемых на один из членов с учетом его физического смысла; 3) вычеркиваются символы дифференцирования. Символы степеней дифференциалов сохраняются.
При проведении процесса физические величины в различных точках рабочего объема могут иметь различные значения. В этом случае в критериях подобия фигурируют усредненные значения, и тогда пользуются усредненными критериями (числами) подобия. Кроме критериев подобия, получаемых из дифференциальных уравнений, используются также параметрические критерии, представляющие собой отношение двух одноименных величин и вытекающие непосредственно из условии задачи исследования.
Например, при изучении движения жидкости в канале процесс будет зависеть от соотношения длины трубы и диаметра l/d=Г2 (где Г — геометрический критерий подобия), относительной шероховатости и диаметра трубы Δ/d=Г2. Линейный размер, входящий в эти критерии подобия, называется определяющим размером. Все критерии подобия можно разделить на определяющие и определяемые. Определяющие критерии состоят только из физических величин, входящих в условия однозначности. Критерии подобия, в состав которых входит хотя бы одна величина, не входящая в условия однозначности, называются определяемыми. Для обеспечения подобия необходимо равенство определяющих критериев. Равенство определяющих критериев является достаточным условием подобия.
Неопределяющие критерии являются однозначной функцией определяющих критериев.