Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Voprosy алгебра.docx
Скачиваний:
19
Добавлен:
23.09.2019
Размер:
60.57 Кб
Скачать

18. Определение скалярного произведения.

Скалярным произведением двух ненулевых векторов а и b называетсячисло, равное произведению длин этих векторов на косинус угла междуними.

Обозначается ab,а* b(или( а, b)).Итак, по определению,

  

Формуле   (6.1)   можно   придать   иной   вид.   Так   как |a| cosg=пр ba, (см. рис.14), a |b| cosg = пр ab, то получаем:

      

 т. е. скалярное произведение двух векторов равно модулю одного из них, умноженному на проекцию другого на ось, сонаправленную с первым вектором.

19. Свойства скалярного произведения.

1. Скалярное произведение обладает переместительным свойством: ab=ba

  

Решение:                                                              

5. Если векторы а и b(ненулевые) взаимно перпендикулярны, то их скалярное произведение равно нулю, т. е. если ^b, тоab=0. Справедливо и обратное утверждение: если ab=0 и а¹ 0¹b, то а^ b

.

20. Выражение скалярного произведения через координаты.

Пусть заданы два вектора

Найдем скалярное произведение векторов, перемножая их как многочлены (что законно в силу свойств линейности скалярного произведения) и пользуясь таблицей скалярного произведения векторов i, j, k:

   

    т.е

Итак, скалярное произведение векторов равно сумме произведений их одноименных координат.

Пример 6.2.

Доказать, что диагонали четырехугольника, заданного координатами вершин А(-4;-4;4), В(-3;2;2),C(2; 5;1), D(3;-2;2), взаимно перпендикулярны.

Решение: Составим вектора АС и BDлежащие на диагоналях данного четырехугольника. Имеем: АС = (6;9;-3) и BD = (6;-4;0). Найдем скалярное произведение этих векторов:

АС • BD = 36 - 36 - 0 = 0.

Отсюда следует, что AC^BDДиагонали четырехугольника ABCD взаимно перпендикулярны.

21. Приложения скалярного произведения.

Угол между векторами

    Определение угла φ между ненулевыми векторами а(ax; ay; azи b=( bх; bу; bг):

Отсюда следует условие перпендикулярности ненулевых векторов а и b:

Проекция вектора на заданное направление

Нахождение проекции вектора ана направление, заданное векторомb, может осуществляться по формуле

Работа постоянной силы

Пусть материальная точка перемещается прямолинейно из положения А в положение В под действием постоянной силы F, образующей угол j с перемещением АВ= S (см.рис. 15).

Из физики известно, что работа силы F при перемещении S равна

А=F•S•cosj   т. е.   А=(F•S).

Таким образом, работа постоянной силы при прямолинейном перемещении ее точки приложения равна скалярному произведению вектора силы на вектор перемещения.

Пример 6.3.

Вычислить работу, произведенную силой F=(3;2;4), если точка ее приложения перемещается прямолинейно из положенияA(2;4;6) в положение В(4;2;7). Под каким углом к АВ направлена сила F?

22. Определение векторного произведения.

Три некомпланарных вектора a, b и с, взятые в указанном порядке, образуют правую тройку, если с конца третьего вектора с кратчайший поворот от первого вектора а ко второму вектору b виден совершающимся против часовой стрелки, и левую, если по часовой (см. рис. 16).

      

 Векторным произведением вектора а на вектор b называется вектор с, который:

1. Перпендикулярен векторам a и b, т. е. с^а и с^b;

2. Имеет длину, численно равную площади параллелограмма, построенного на векторах а и bкак на сторонах (см. рис. 17), т. е.

3.Векторы a, b и с образуют правую тройку.

Векторное произведение обозначается а х b или [а,b]. Из определения векторного произведения непосредственно вытекают следующие соотношения между ортами i , j и k(см. рис. 18):

i х j = k,    j х k = i,    k х i = j.  Докажем, например, что iхj=k.

1) k^i, k^j;

2) |k|=1, но | i x j| = |i| • |J| • sin(90°)=1;

3) векторы i , j и k образуют правую тройку (см. рис. 16).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]