
- •1. ЛллшЭлектрическая цепь и её элементы:
- •2. Метод непосредственного применения законов Кирхгофа:
- •3. Метод контурных токов.
- •4.Метод узловых напряжений:
- •5. Метод эквивалентных преобразований.
- •6.Метод наложения:
- •7.Метод эквивалентного генератора:
- •8.Синусоидальные напряжения и токи. Мгновенные, амплитудные, действующие и средние значения синусоидальных величин.
- •9.Комплексная, тригонометрическая, векторная и волновая формы представления синусоидальных величин.
- •10.Комплексный метод расчета цепей с синусоидальными режимами. Баланс Мощностей:
- •11.Резонанс напряжений. Условие, признаки, резонансные кривые, применение.
- •12. Резонанс токов. Условие, признаки, резонансные кривые, применение.
- •13. Мощность в цепи переменного тока. Активная, реактивная, полная комплексная.
- •14. Анализ процесса в цепях с взаимной индуктивностью.
- •15. Трехфазная электрическая цепь. Основные понятия и определения. Получение трехфахной симметричной системы эдс.
- •16. Особенности системы напряжений на выходе трехфазного источника питания в зависимости от способа соединения обмоток трехфазного генератора.
- •17. Режим работы симметричного трехфазного приемника, соединенного по схеме «Звезда» при четырехпроводной и трехпроводной системах подключения.
- •1. Симметричная нагрузка
- •18. Режим работы несимметричного трехфазного приемника, соединенного по схеме «Звезда» при четырехпроводной и трехпроводной системах подключения.
- •19.Режим работы симметричного и несимметричного трехфазного приемника, соединенного по схеме «Звезда» при четырехпроводной схеме подключения и наличии нагрузки в нейтральном проводе.
- •20.Режим работы симметричного и несимметричного трехфазного приемника, соединенного по схеме «треугольник».
- •21. Расчет и измерение мощности трехфазных цепей переменного тока.
- •24. Анализ режимов электрической периодической цепи с несинусоидальными напряжениями и токами.
- •25. Метод эквивалентных синусоид. Действующие и средние значения несинусоидальных напряжений и токов. Активная и полная мощность. Коэффициент мощности.
- •26. Особенности режимов работы трехфазных цепей при несинусоидвльных токах и напряжениях.
- •27. Типы уравнений пассивного четырехполюсника. Уравнение четырехполюсника. Эквивалентные семы замещения четырехполюсника.
- •28. Коэффициенты четырехполюсника, их определение путем эксперимента, связь между коэффициентами.
- •29. Характеристические параметры четырехполюсника.
- •30. Расчет переходных процессов классическим методом.
- •31. Расчет переходных процессов операторным методом.
31. Расчет переходных процессов операторным методом.
Поскольку для операторных токов, напряжений и сопротивлений справедливы законы Ома и Кирхгофа, то расчет операторных токов и напряжений будет аналогичным расчету постоянных токов и напряжений в резистивных цепях постоянного тока. В частности, могут быть использованы все известные методы расчета (метод эквивалентных преобразований, метод узловых напряжений и т.д.), которые основаны на законах Ома и Кирхгофа. Учитывая изложенное, приведем методику решения задач операторным методом.
Определяются начальные условия
и
обычным путем на основании законов коммутации.
Для цепи после коммутации составляется операторная схема замещения, в которой элементы представляются их операторными схемами замещения, реальные токи и напряжения заменяются операторными. Такой замене подвергаются как искомые токи и напряжения, так и известные токи и напряжения источников.
Для операторной схемы замещения определяются искомые операторные токи и напряжения с использованием законов Ома, Кирхгофа и всех методов расчета (эквивалентных преобразований, эквивалентного генератора, узловых напряжений и т.д.).
По найденным операторным токам и напряжениям определяются реальные токи и напряжения по таблицам или по формуле разложения, которая будет рассмотрена ниже.
Переход к оригиналу от операторного тока осуществляется с помощью теоремы разложения:
Пусть
дано изображение напряжения
.
Определить оригинал (реальное напряжение) по формуле разложения.
Определяем корни полинома знаменателя B(p):
Коэффициенты:
,
Реальное
напряжение
_________________________________________________________________________________________________________________________________
Пример
1.
Для цепи на рис. 3.3 определить ток
после
коммутации.
Начальные
условия задачи нулевые
.
Поэтому в операторной схеме замещения
не будет дополнительных источников.
Операторная схема замещения показана
на рис. 3.4. В ней представлены операторные
сопротивления элементов и операторный
искомый ток I1(p)
. Задающий ток I0 источника
постоянного тока преобразуется в
задающий операторный ток
согласно
преобразованию Лапласа от постоянной
величины (см. таблицу 3.1 соответствие
2).
Для
определения тока
в
операторной схеме замещения можно
использовать метод эквивалентных
преобразований: определить эквивалентное
сопротивление относительно зажимов
источника, затем напряжение
на
зажимах источника (оно же действует и
на резисторе R1)
и наконец ток
.
Операторное
сопротивление последовательной
цепи R2L -
;
эквивалентное операторное сопротивление
соответствует параллельному соединению
ветвей R1 и ZRL(p) и
равно
.
Операторное напряжение на резисторе R1
Искомый операторный ток:
Приводим его к табличному виду:
Переходим к оригиналу