
- •302030, Г. Орел, ул. Московская, 65
- •Содержание Введение
- •Модуль 1. Вычислительные машины Лекция 1. Основные понятия вычислительной техники и принципы организации вычислительных машин и систем
- •1.1 Основные понятия и определения
- •1.2 Принципы организации вычислительных машин и систем
- •1.3 Основные характеристики вычислительных машин и систем
- •1.4 Многоуровневая организация вычислительных процессов
- •Вопросы для самопроверки
- •Лекция 2. Простейшие типовые элементы вычислительных машин
- •2.1 Комбинационные схемы
- •1) Конъюнкция (логическое умножение) .
- •2) Дизъюнкция (логическое сложение) .
- •3) Отрицание (инверсия) .
- •4) Конъюнкция и инверсия (Штрих Шеффера) .
- •5) Дизъюнкция и инверсия (Стрелка Пирса) .
- •6) Эквивалентность .
- •7) Отрицание эквивалентности .
- •2.2 Автоматы с памятью
- •2.3 Триггеры
- •2.4 Проблемы и перспективы развития элементной базы вычислительных машин
- •Вопросы для самопроверки
- •Лекция 3. Функциональные узлы комбинационного и последовательного типов
- •3.1 Функциональные узлы последовательного типа
- •3.1.1 Регистры
- •3.1.2 Счётчики
- •3.1 Функциональные узлы комбинационного типа
- •3.2.1 Шифраторы и дешифраторы
- •3.2.2 Компараторы
- •3.2.3 Сумматоры
- •Вопросы для самопроверки
- •Лекция 4. Функциональная организация процессора
- •4.1 Основные характеристики и классификация процессоров
- •4.2 Физическая и функциональная структура процессора
- •4.2.1 Операционное устройство процессора
- •4.2.2 Шинный интерфейс процессора
- •4.3 Архитектурные принципы организации risc-процессоров
- •4.4 Производительность процессоров и архитектурные способы её повышения
- •Вопросы для самопроверки
- •Лекция 5. Организация работы процессора
- •5.1 Классификация и структура команд процессора
- •5.2 Способы адресации данных и команд
- •5.2.1 Способы адресации данных
- •5.2.2 Способы адресации команд
- •5.3 Поток управления и механизм прерываний
- •Вопросы для самопроверки
- •Лекция 6. Современное состояние и тенденции развития процессоров
- •6.1 Архитектурные особенности процессоров Pentium
- •6.2 Программная модель процессоров Pentium
- •6.2.1 Прикладная программная модель процессоров Pentium
- •6.2.2 Системная программная модель процессоров Pentium
- •6.2.3 Система команд и режимы адресации процессоров Pentium
- •6.3 Аппаратная организация защиты в процессорах Pentium
- •6.4 Аппаратные средства поддержки многозадачности
- •6.5 Перспективы развития процессоров
- •Вопросы для самопроверки
- •Лекция 7. Память. Организация памяти.
- •7.1 Иерархическая организация памяти
- •7.2 Классификация запоминающих устройств
- •7.3 Структура основной памяти
- •7.4 Память с последовательным доступом
- •7.5 Ассоциативная память
- •7.6 Организация флэш-памяти
- •7.7 Архитектурные способы повышения скорости обмена между процессором и памятью
- •Вопросы для самопроверки
- •Лекция 8. Управление памятью. Виртуальная память
- •8.1 Динамическое распределение памяти
- •8.2 Сегментная организация памяти
- •Лекция 9. Организация ввода-вывода информации. Системная шина
- •9.1 Организация шин. Системная шина
- •9.1.1 Структура системной шины
- •9.1.2 Протокол шины
- •9.1.3 Иерархия шин
- •9.2 Организация взаимодействия между периферийными устройствами и процессором и памятью вычислительных машин
- •9.3 Внешние интерфейсы вычислительных машин
- •9.3.1 Параллельный порт lpt и интерфейс Centronics
- •9.3.1 Последовательный порт com и интерфейс rs-232c
- •9.3.3 Универсальная последовательная шина usb
- •9.3.4 Беспроводные интерфейсы
- •Вопросы для самопроверки
- •Модуль 2. Вычислительные системы Лекция 10. Вычислительные системы параллельной обработки. Многопроцессорные и многоядерные системы.
- •10.1 Параллельная обработка информации
- •10.2 Классификация систем параллельной обработки данных
- •10.2.1 Классификация Флинна
- •10.2.2 Классификация Головкина
- •10.2.3 Классификация многопроцессорных систем по способу организации памяти
- •10.3 Вычислительные системы на кристалле. Многоядерные системы
- •10.4 Тенденции развития вычислительных систем
- •Вопросы для самопроверки
- •Лекция 11. Организация микроконтроллеров и микроконтроллерных систем
- •11.1 Общие сведения о системах управления
- •11.2 Организация микроконтроллеров и микроконтроллерных систем
- •11.3 Области применения и тенденции развития мк
- •Вопросы для самопроверки
- •Модуль 3. Телекоммуникационные сети Лекция 12. Организация компьютерных сетей
- •12.1 Обобщённая структура компьютерных сетей
- •12.2 Классификация компьютерных сетей
- •Лекция 13. Стандартизация компьютерных сетей. Эталонная модель взаимодействия открытых систем
- •13.1 Понятие «открытой системы». Взаимодействие открытых систем
- •13.2 Эталонная модель взаимодействия открытых систем
- •13.3 Структура блоков информации
- •7 Прикладной 6 Представительный 5 Сеансовый 4 Транспортный 3 Сетевой 2 Канальный 1 Физический
- •Вопросы для самопроверки
- •Лекция 19. Безопасность информации в сети
- •19.2 Стеганография
- •19.2.1 Общие сведения о стеганографических системах
- •19.2.2 Методы стеганографии
- •Вопросы для самопроверки
- •Литература
12.2 Классификация компьютерных сетей
На основании /1-3, 25/, КС можно классифицировать по приведённым ниже признакам.
1) По территориальному охвату выделяют следующие группы сетей:
1.1) Глобальные сети (Wide Area Network – WAN) – сети, объединяющие тысячи узлов, удалённых друг от друга на значительное расстояние, часто находящихся в различных странах или на разных континентах. В связи с большой сложностью такие сети имеют иерархическую структуру. Взаимодействие между абонентами глобальной сети может осуществляться на базе телефонных линий связи, систем радиосвязи и спутниковой связи.
1.2) Региональные (городские) сети (Metropolitan Area Network - MAN)– сети, объединяющие абонентов района, города, области или небольшой страны. Обычно удалённость абонентов составляет десятки-сотни километров.
1.3) Локальные сети (Local Area Network - LAN) – сети, объединяющие до нескольких сотен узлов, удалённых друг от друга не небольшие (10-15 км) расстояния.
2) По функциональному назначению выделяют:
2.1) Вычислительные сети – предназначены, главным образом, для решения задач пользователей с обменом данными между её абонентами.
2.2) Информационные сети – ориентированы, в основном, на предоставление информационного обслуживания по запросам пользователей.
2.3) Инфрмационно- вычислительные сети – объединяют в себе функции и вычислительных и информационных сетей. В настоящее время к этой категории относятся большинство современных КС.
3) По типу используемого оборудования различают:
3.1) Однородные (гомогенные) сети – содержат программно-совместимое оборудование. Как правило, сюда относятся локальные сети.
3.2) Неоднородные (гетерогенные) сети – содержат программно-несовместимое оборудование. Чаще всего в эту группу входят глобальные сети.
4) По степени доступности к ресурсам сети выделяют:
4.1) Сети общего пользования (универсальные) сети – обслуживают круг разнообразных пользователей, имеющих доступ в эти сети.
4.2) Корпоративные (частные) сети – сети отдельных компаний, фирм, частных лиц, доступ к ресурсам которых имеет строго ограниченный круг пользователей (сотрудники компаний, фирм и т.п.).
5) По принципу организации передачи данных выделяют:
5.1) Последовательные сети – передача данных выполняется последовательно от одного узла к другому, и каждый узел ретранслирует принятые данные дальше. Подавляющее большинство сетей относятся к этому типу.
5.2) Широковещательные сети – в каждый момент времени передачу может вести только один узел, остальные узлы могут только принимать информацию. К такому типу относятся локальные сети, использующие один общий канал связи (моноканал).
Лекция 13. Стандартизация компьютерных сетей. Эталонная модель взаимодействия открытых систем
Сеть состоит из огромного числа различных модулей: компьютеров, коммуникационного оборудования, операционных систем, сетевых приложений. Разнообразные требования, предъявляемые потребителями к сетям. Привели к такому же разнообразию выпускаемых для построения сети устройств и программ, которые различаются своими функциями и характеристиками. В результате, в настоящее время не существует компании, которая смогла бы обеспечить производство полного набора оборудования и программного обеспечения, необходимого для построения сетей /3/.
Однако, поскольку компоненты сети должны работать согласованно, то оказалось необходимым принятие многочисленных стандартов, которые, в большинстве случаев, гарантировали бы согласованность оборудования и программного обеспечения по функциям. Поэтому всё развитие компьютерной отрасли, в конечном счёте, отражено в стандартах. Любая новая технология только тогда приобретает «законный» статус, когда её содержание закрепляется в соответствующем стандарте /3/.
Стандарт взаимодействия открытых систем (ВОС) касается средств взаимодействия устройств, связанных в сеть. Введем понятие «открытой системы».