
- •1. Определение психофизиологии как науки
- •2. Психофизиологические методы исследования
- •3. Принципы кодирования информации
- •4. Системы выделения признаков
- •5. Роль модуляторных нейронов
- •6. Иерархическая система упарвления
- •Концептуальная рефлекторная дуга
- •8. Принцип обратной связи
- •9. Модель анализатора
- •10. Перцептивное пространство
- •11. Нейронные механизмы восприятия яркости, цвета и формы
- •12. Стереоскопическое зрение
- •13. Нейронные механизмы восприятия звука
- •13. Нейронные механизмы восприятия бинаурального и фонематического звука
- •15. Психофизиология движения
- •Нейронные механизмы построения движения
- •17. Нейронные механизмы сочетания движения глаз, головы и рук
- •18. Импринтинг и его нейронные механизмы
- •19. Ассоциативное и неассоциативное обучение
- •20.21. Память
- •Механизмы долговременной памяти.
- •Механизмы кратковременной памяти.
- •22. Психофизиология бодрствования.
- •23. Виды сна, эелектроэнцефаография сна
- •24. Ретикулярная формация
- •25. Стресс и его виды
- •26. Нейрогуморальные механизмы стресса
- •27. Нейроанатомия эмоций
- •28. Нейрогуморальные механизмы эмоций
- •29. Функциональная асимметрия мозга и эмоции
- •30. Механизм ориентировочного рефлекса
- •31. Психофизиология адаптационных процессов
- •Нейрофизиологические механизмы оборонительного рефлекса
- •33. Психофизиологические аспекты принятия решения
- •34. Психофизиология речи
- •35. Психофизиология мышления
- •36 . Особенности формирования и функционирования внутренней речи
- •37. Нейронные речевые коды
- •38. Основные виды биоэлектрической активности
- •39. Практическое применение ээг
- •Сознание с точки зрения психофизиологии
- •Физиологические основы психотерапии, гипноза и медитации
- •Физиологические аспекты мыслительной деятельности человека
17. Нейронные механизмы сочетания движения глаз, головы и рук
Сравнительный анализ нервно-мышечной организации глазодвигательной активности и других соматических движений позволяет выявить черты как сходства, так и различия. Моторика глаз подчинена главным принципам работы нервно-мышечной системы и то же время обладает определенной спецификой, обусловленной той ролью, которую выполняет двигательный аппарат глаза в процессе реализации зрительных функций.
Предельно высокая скорость глазных скачков способствует быстроте зрительных ориентировок (и оптомоторных реакций) и обеспечивает фильтрацию тех перемещений изображения по сетчатке, которые вызываются собственными движениями глаз. На пути решения этих задач произошла, по-видимому, дивергенция двух механизмов, которые в работе других мышц разделены в меньшей мере, а именно механизма рекрутирования двигательных единиц и механизма градуальных изменений частоты разрядов нейронов. В результате такой дивергенции иннервация саккад приобрела специфический "взрывной" характер, а плавные движения (при фовеальном прослеживании) управляются по принципу частотной регуляции мышечных сокращений. Проблема взаимодействия фазических и тонических единиц требует дальнейших фактических уточнений. Однако на сегодня она может быть гипотетически решена следующим образом. Наиболее вероятно, что "истинные" тонические единицы участвуют в эволюционно древних компенсаторных движениях глаз, афферентируемых вестибулярно.
В филогенезе нервная трубка начинает свертываться на уровне будущего продолговатого мозга, и уже отсюда происходит ее дальнейшее развитие в обе стороны. Это вполне объяснимо: именно здесь, в непосредственной близости от ротового отверстия, закладываются важнейшие вегетативные и соматические образования. Здесь формируется древнейший вегетативно-соматический "координационный центр", с которого и начинается процесс кефализации. В условиях примитивного червеобразного движения повороты переднего конца тела способствовали пространственной ориентации животного, возможности которой значительно расширились с появлением светочувствительных нервных окончаний - зачатков будущих глаз.
С этих позиций становится понятным смысл представительства моторного аппарата зрения в нижних оливах - парных ядрах продолговатого мозга, участвующих в регуляции поворотов головы и ориентации тела. Видимо, благодаря таким связям глазодвигательный аппарат современных позвоночных в ходе своего развития оказался включенным в интегральную схему пространственной ориентации животного, позволяющую координировать движения головы, глаз и всего тела. Поскольку ориентация и перемещение в пространстве неразрывно связаны с влиянием гравитации, уже на ранних этапах филогенеза позвоночных сформировался контур регулирования глазодвигательной активности, объединяющий вестибулярный аппарат, мозжечок и нижние оливы.
Глаза современных позвоночных сформировались в результате "выпячивания" нервной трубки на уровне среднего мозга. Поэтому исходную основу ретинального контура регулирования движений глаз составляют мезэнцефалические нервные образования. Верхние двухолмия (ВД), в которых оканчиваются аксоны ганглиозных клеток, - это, по существу, стволовые ганглии глазных сетчаток. По своему происхождению они могут рассматриваться как аналоги сегментарных афферентных ганглиев спинного мозга. В таком случае клетки глубоких слоев ВД и покрышки (тегментума) среднего мозга оказываются аналогами сегментарных интернейроов, роль которых заключается в мультисенсорной интеграции зрительных, слуховых и приприоцептивных (от мышц глаз, шеи и других) посылок. Полисенсорная конвергенция на нейронах ВД имеет, видимо, решающее значение для реализации двух механизмов:
а) соотнесения моторики глаз с общей соматической моторикой;
б) адекватных оптомоторных реакций, т.е. движений в ответ на зрительные сигналы. Нейроны глубоких слоев ВД посылают свои аксоны в парамедиальную ретикулярную формацию моста, а их коллатерали поступают непосредственно во все глазодвигательные ядра.
Таким образом, кратчайший путь, реализующий глазадвигательный ответ на зрительный стимул, включает в себя следующие инстанции: рецепторы сетчатки - ганглиозные клетки - клетки афферентного поверхностного слоя ВД - интернейроны ВД - премоторные нейроны глубоких слоев ВД - мотонейроны глазодвигательных ядер. ВД, по всей вероятности представляет собой тот уровень, на котором под управляющим воздействием идущих из коры ( а также из других инстанций ) импульсов, происходит селекция ретинальных сигналов, нужных для организации адекватной моторики в соответствии с текущими поведенческими задачами.
Говоря о роли ВД в регулировании глазодвигательной активности, нельзя не учитывать, что движения глаз могут афферентироваться другими сенсорными входами, не включающими ВД. Так для реализации вестибуло-окуломоторного рефлекса достаточно связей, охватывающих вестибулярных аппарат, ядра парамедиальной ретикулярной формации и глазодвигательные ядра. Нейроны ВД не активируются при плавных прослеживающих движениях глаз. Выдвинуто предположение, что в этом случае функционирует контур регулирования, содержащий в качестве центрального звена латеральные коленчатые тела. Таким образом, стволовой уровень глазодвигательного контроля представляет весьма сложную, относительно сепаратную (способную самостоятельно функционировать), филогенетически древнюю целостную систему, работающую в неразрывном единстве с сенсорными единицами этого же (стволового) уровня. Именно этим уровнем детерминируются основные динамические характеристики глазодвигательной активности, согласованная работа обоих глаз и координация движений глаз с другими моторными компонентами поведения. В этом случае неизбежно возникает вопрос о принципиальном значении и реальных механизмах высшего кортикального управления глазодвигательной активностью.
Активация фронтальных глазодвигательных полей связана не только с движениями глаз, но и с поворотами головы и играет, вероятно, важную роль в координации движений глаза и руки человека. Париетальная кора ответственна за точную пространственную организацию глазных движений в соответствии со "схемой тела" и изменениями положения тела в пространстве.
Таким образом, различные кортикальные зоны не просто "двигают" глаза, а организуют сложные синергии с участием движений глаз. Иерархический подход к организации движений глаз показывает, что вопросы о разделении функций "по вертикали", характер соподчинения отдельных этажей и их роль в инициации моторных компонентов поведения - сложная и далеко не решенная проблема. По-видимому, в реальных условиях поведения и деятельности взаимодействия внутри иерархии могут быть весьма вариативными. В разных ситуациях и при разных степенях обученности системы в целом ведущая роль может принадлежать разным звеньям и дихотомический выбор между двумя направлениями движения командных посылок (или моторных программ) - снизу вверх или сверху вниз - вовсе не является обязательным.