
- •2.Виды статистического наблюдения. Способы собирание статистических сведений.
- •3.Праграммно-методические вопросы плана стат. Наблюдения.
- •4.Сводка- вторая стадия статис-го исследования. Задачи, программа, план.
- •Вопрос7. Абсолютные величины, их значение, виды, единицы измерения
- •8.Относ-ные величины, обл применения. Способы расчета и формы выражения.
- •9. Виды относительных величин
- •11. Сред-я арифм-ая, ее осн-е св-ва и методы расчета.
- •12. Сред-я гармонич. И др. Виды средних.
- •14.Статистическое изучение вариаций. Показатели вариаций и методы их расчета.
- •16. Дисперсия альтернативного признака.
- •21.Понятия о рядах динамики, их виды и правила построения.
- •25.Сущность идексов, задачи, решаемые индексным методом и классификация индексов.
- •1. Объект и предмет изучения сэс
- •2.Задачи соц-эк-ой стат-ки(сэс).Задачи стат-ки по внедрению межд-ых стандартов.
- •3. Секторная стр-ра рыночной экономики.
- •4. Отраслевая классификация идов эк. Деятельности.
- •5. Сущность и принципы построения снс
- •7 Показатели валового выпуска товаров (вв) и услуг
- •9 Показ-ли валовой добавленной стоимости и ввп.
- •13.Показ-ли распред-ия первич-ых дох-в; опред Нац дох распредел-ным методом.
- •15,.Показ-ли конеч-го использ-я дох. Исчисление распол-го нац. Дох.
- •19. Начальный и закл-й баланс а и п (нац. Богатства).
- •22. Причины численности и состава населения.
- •24. Показатели занятости населения.
- •27. Системы частных показателей эффективности общественного производства.
- •29. Понятие уровня населения .
- •30,32. Система показателей доходов(Дх) населения.
- •31. Совок потребление включает след показатели:
11. Сред-я арифм-ая, ее осн-е св-ва и методы расчета.
Ср.арифм-ая- такое знач-ие признака, кот. имела бы каждая ед-ца совок-ти, если бы общий итог равномерно распред-ся между ед-цами совок-ти. Выражается дробным числом если даже индивид.значения признака заданы целым числом. Простая ср.арифм-ая- употребл-ся по несгруппиров. данным если отсутствует повторение признака. Ср. взвеш. величина- исполь-ся для анализа сгруппиров. данных при наличии числа повторений отд.значений признака. Для её расчёта важное знач имеет выбор пок-ля частоты повторения или веса. Св-ва ср.арифм. величины: 1. СВ постоян-го показ-ля = этой постоянной. 2.алгебраич. сумма линейных отклонений индивид.значений признака от ср.=0. 3.сумма квадратов отклонений индивид. значений признака от ср. арифм-ой есть число минимальное.
12. Сред-я гармонич. И др. Виды средних.
Ср.гарм. вел-на выраж. в 2 формах: простая и взвешенная. В практич. расчётах наиб. часто прим-ся гармонич.взвеш-ая. Она использ. в тех случаях, когда заранее не известно общ.кол-во ед-ц совок-ти. Но имеются данные о произведении индивид. значения признака на частоту их повторений: х гарм. = суммаW/ сумма w/x , где w- объём признака =f*x. Мода- индивид. знач. признака, кот. наиб. часто встречается в изуч-ой совок-ти. Для дискретного ряда стат.данных мода опред. по наибольшей частоте повторений признака. Для интервальн. ряда по макс. частоте выходят на модальный интервал, а приближ. знч. Моды опред. по след. формуле: Mo =x mo+ i mo *(f mo-f mo-1)/ (f mo-f mo-1)+(f mo-f mo+1), где X mo – нижн. граница модального интервала, I mo – величина мод. интервала, F mo – частота мод. интервала. Медиана- это варианта, кот. расположена в середине ранжир. вариац. ряда и кот. делит этот ряд пополам. расчёт медианы зависит от способа предоставления цифр. данных. Для дискр. ряда медиана опред. по порядков. № варианты, кот. расположена в середине совок-ти. Для интерв. ряда первонач-но опред. медианный интервал, а приближ. знач-ие медианы вычисл. по след. ф-ле: Me= x me+ i me (суммаf+1/2 – S me-1)/ f me , где X me – нижн. граница медиан. интервала, I me – величина медиан. интервала, F – частота повторения признака, S me-1 – сумма накопл. частот ряда до мед. интервала, F me – частота мед. интервала.
13. Ср.гарм.вел-на
проявл-ся в форме простой и взвеш-ой.
На практике более распростран-ой явл.
ср. гарм. взвеш-ая. Она исп-ся при расчете
общей средней из средних группировок.
На практике ср. гарм. взвеш. употр-ся
тогда, когда неизвестно кол-во ед. сов-ти,
зато известно произвед-е индив-ых знач-й
на частоту повторения.
гарм
= Σw/Σ.
Мода-
индив-е знач-е признака, кот-ый наиболее
часто встреч-ся в изучаемой сов-ти. Для
дискретного ряда статист-ых данных мода
опр-ся просто по наибольшей частоте.
Для интерв-го ряда данных по мах частоте
опр-ся интервал, кот содержит моду.
Приближ-ое знач-е моды опр-ся по след-щей
ф-ле: Мо=X
mo+i
mo*(f
mo
–fmo-1)/(
f
mo
–fmo-1)+(
f
mo
–fmo+1).
Где Х mo-нижняя
граница модального интервала, I
mo
- вел-на модального интервала,f
mo
-модальная частота, f
mo-1-предмод-ая
частота, f
mo+1-послемод-ая
чостота. Медиана-варианта,
кот-ая расположена в середине ранжированного
ряда. Мед-на вычисл-ся по разному в
зависимости от хар-ра исходных данных.
Если стат-ие данные представлены в виде
дискретного ряда, мед-на опр-ся достаточно
просто по порядковому номеру варианты,
кот нах-ся в середине ряда. В интерв-ом
ряду распред-я первонач-но опр-ся инт-л,
кот-ый содержит медиану. Приближ-ое
знач. медианы вычис-я по след. ф-ле: Ме=X
me+i
me*(Σf+1-деленное
на 2 –S
me-1/f
me).
Где- X
me-нижняя
граница медианного инт-ла, i
me-
вел-на мед-го инт-ла, f-
частоты. S
me-1-сумма
накопленных частот до мед-го инт-ла, f
me-
частота мед-го инт-ла.