- •Министерство образования Российской Федерации
- •Расчётно-графическая работа
- •«Расчет и повышение надежности технической системы» вариант 19
- •Содержание
- •1. Декомпозиция схемы
- •2.Определение γ-процентной наработки т. С.
- •3. Обеспечение увеличения γ-процентной наработки не менее ,чем в 1,5 раза за счет повышения надежности элементов
- •4.Обеспечение увеличения γ-процентной наработки не менее ,чем в 1,5 раза за счет структурного резервирования элементов системы
1. Декомпозиция схемы
![]()


а)
Преобразуем следующие параллельные соединения:
-2 и 3
;
-11 и 12
;
-8 и 9
;
-5 и 6
;
-14 и 15
.
![]()
![]()
![]()
![]()
![]()


![]()
б)
Преобразуем
следующие последующие звенья соединения:
A-7-B;
4-C-13;
D-10-E.
![]()
![]()
![]()

в![]()
)
Преобразуем параллельные соединения F,GиH:
![]()
На этом этапе считаем декомпозицию схемы законченной (осталось всего 2 последовательно соединенных элемента).
2.Определение γ-процентной наработки т. С.
Так как по условию все элементы системы работают в периоде нормальной эксплуатации, то вероятность безотказной работы элементов с 1 по 15 подчиняются экспоненциальному закону :
exp(-
).
(1)
Результаты
расчетов вероятностей безотказной
работы элементов 1-15исходной схемы по формуле (1) для
наработки до 0.7-10
часов представлены в таблице 1
Результаты расчетов- вероятностей безотказной работы квазиэлементов А, В, С,D, Е,FиGпо найденным в п.1 формулам также представлены в таблице 1.
На рис. 1 представлен график зависимости вероятности безотказной работы системы Р от времени (наработки) t.
По
графику (рис. 1, кривая Р) находим для γ=
75% (Р
=0.75) γ-
процентную
наработку
системыТγ
=0.225 *10
ч.
Проверочный
расчет при t= 0.225-10
ч показывает (таблица 1), чтоPγ
=0.7531≈0.75
3. Обеспечение увеличения γ-процентной наработки не менее ,чем в 1,5 раза за счет повышения надежности элементов
По условиям задания повышенная γ - процентная наработка системы
=1.5-T
.
= 1,5•0,225•10
= 0.3375-10
ч.
Расчет показывает (таблица 1), что при t =0.3375×106ч для элементов преобразованной схемы (рис. 1) p1=0.9668, pK= 0.18498 Следовательно, из двух последовательно соединенных элементов минимальное значение вероятности безотказной работы имеет элемент К и именно увеличение его надежности даст максимальное увеличение надежности системы в целом
а) Для
того, чтобы при
=
0.3375×106ч система
в целом имела вероятность безотказной
работы Рg=0.75,
необходимо, чтобы элемент К имел
вероятность безотказной работы
.
При этом значении элемент К останется самым ненадежным в схеме Очевидно, значение Р является минимальным для выполнения условия увеличения наработки не менее, чем в 1.5 раза, при более высоких значениях pК,увеличение надежности системы будет большим.
б)Для определения минимально необходимой
вероятности безотказной работы элементов
F,Hнеобходимо
решить уравнение
относительно
pF
при pК=
.
и
Однако, т.к. аналитическое выражение
этого уравнения связано с определенными
трудностями , более целесообразно
использовать графоаналитический метод.
для этого строим график зависимости
pK =f(PF)
Рис.
2. Зависимость вероятности безотказной
работы системы Kот
вероятности безотказной работы ее
элементов

По графику при pK= 0.775745 находим pF»0,375.
в)Для определения минимально необходимой
вероятности безотказной работы элементов
A,B,D,Eнеобходимо решить
уравнение
относительно
pА при pF=0.375.
и![]()

г) Для определения минимально необходимой
вероятности безотказной работы элементов
2,3,5,6,11,12,14,15 необходимо решить уравнение
относительно p2 при pА=0.725.
![]()
22. Так как по условиям задания все элементы работают в периоде нормальной эксплуатации и подчиняются экспоненциальному закону , то для элементов 2,3,5,6,11,12,14,15 при t=0.3375×106находим
![]()
Таким образом, для увеличения g- процентной наработки системы необходимо увеличить надежность элементов 2,3,5,6,11,12,14,15 и снизить интенсивность их отказов с 5 до 2.19×10-6ч-1, т.е. в 2.3 раза.
Результаты расчетов для системы с увеличенной надежностью элементов 2,3,5,6,11,12,14,15 приведены в таблице 1. Там же приведены расчетные значения вероятности безотказной работы и системы в целом Р` При t= 0.3375×106ч вероятность безотказной работы системы Р`=0,7509≈0,75,что соответствует условиям задания.График P’ приведен на рис 1.
