Зависимость коэффициента качества k от лпэ ионизирующего излучения

ЛПЭ для воды, кэВ/мкм

≤3,5

7,0

23

53

≥175

k

1

2

5

10

20

Между k и ЛПЭ имеется эмпирическая связь:

k = [A/L]·[1 - ехр(-В · L2,03)], (3.20)

где: А = 6000 кэВ/мкм; В = 4,6· 10-5 (мкм/кэВ)2.

Среднее значение ЛПЭ для поля берется в кэВ/мкм. Вычисленные величины k в (3.20) имеют погрешность 3% для низких энергий и 10% для высоких энергий.

Под ОБЭ излучения понимают отношение поглощенной дозы образцового излучения, вызывающей определенный биологический эффект, к поглощенной дозе рассматриваемого излучения, вызывающей тот же самый биологический эффект. В качестве образцового излучения используют рентгеновское излучение с непрерывным энергетическим спектром с граничной энергией 200 кэВ и со средней ЛПЭ равной 3,5 кэВ/мкм воды. Однако значения k не полностью соответствуют ОБЭ по ряду наблюдаемых вредных эффектов. Например, при стохастическом эффекте при низком уровне поглощенной дозы и нестохастическом эффекте при большой поглощенной дозе у человека. Нестохастическими или пороговыми называются вредные эффекты облучения, если они выявляются начиная с какого-то определенного порогового значения дозы. Для этих эффектов вероятность их возникновения (частота) и степень тяжести возрастают с увеличением дозы. Последствия облучения человека, вероятность возникновения которых существует при сколь угодно малых дозах облучения (отсутствует порог) и возрастает с дозой, называют стохастическими или беспороговыми.

Если энергетический состав излучения неизвестен, рекомендуется использовать значения k, приводимые в табл. 3.4.

Таблица 3.4.

Значения коэффициента качества k для излучений различных видов с неизвестным энергетическим составом

Вид излучения

К

Рентгеновское и γ-излучение, электроны, позитроны, β-излучение

1

Нейтроны с энергией меньше 20 кэВ

3

Нейтроны с энергией 0,1 — 10 МэВ

10

Протоны с энергией меньше 10 Мэв

10

α-излучение с энергией меньше 10 МэВ

20

Тяжелые ядра отдачи

20

Значения k для излучения моноэнергетических нейтронов и протонов приведены в табл. 3.5 . Для фотонов, электронов, позитронов и p-частиц k= I. Однако, в ряде работ для фотонов невысоких энергий (E0 <1 МэВ) значения k>l, например, для E0 = 0,1 МэВ k= 1.5; для E0 = 0,05 МэВ k = 1,7; для E0 = 0,03 МэВ k = 4,5.

Таблица 3.5.

Значения k для моноэнергетических нейтронов и протонов

Энергия, МэВ

k

Энергия, МэВ

k

нейтроны

1

12

тепловые

2,9

2,5

10

1·10-7

2,4

5

8,4

1·10-6

1.9

10

6,7

1·10-5

1,7

20

5,4

1·10-4

1,7

протоны

5 · 10-3

2.8

2

13.5

2 ·10-2

4,9

5

11,7

1 · 10-1

8,0

10

9,4

5 ·10-1

12

20

7,0

Когда ЛПЭ во всех точках облучаемого объекта неизвестно, допустимо использовать усредненные значения k применительно к различным видам первичного излучения.

Для смешанного излучения эквивалентная доза определяется как произведение поглощенных доз отдельных видов излучений Di на соответствующие значения :

(3.21)

где i, индекс вида и энергии излучения.

Разные органы и ткани имеют разные чувствительности к излучению.

Это было учтено в НРБ-76/87 использованием концепции критического органа (см.гл.5). Однако, признание гипотезы беспорогового действия радиации МКРЗ потребовало отказа от этой концепции. И после публикации МКРЗ №26 ограничение уровня облучения стало основываться на концепции приемлемого риска. В результате для случаев неравномерного облучения разных органов или тканей тела человека было введено понятие эффективной эквивалентной дозы.

Для определения этой величины необходимо ввести понятие риска. Риск—вероятность возникновения неблагоприятных последствий (смертные случаи, травматизм, профессиональные заболевания т.п.). Например, риск смерти от курения r=5·10-4 случаев/(чел · год). Это означает, что на 1 млн. курящих людей каждый год умирает от болезней, вызываемых курением, дополнительно 500 чел.

При оценке вреда можно учитывать неблагоприятные последствия, связанные с наиболее радиочувствительными органами и тканями. В табл.3.6 приведены вероятности смертельных исходов ст от злокачественных опухолей и наследственных эффектов для различных групп органов при эквивалентной дозе 1 Зв рекомендовавшиеся МКРЗ до 1990 г.

При одновременном облучении нескольких органов вероятность выхода неблагоприятных исходов складывается, т.е. сн = Σ ст

Из изложенного следует, что индивидуальная вероятность или риск смерти rт от злокачественного новообразования при среднем значении эквивалентной дозы (H )т в данном органе или ткани

rт = стср)т. (3.22)

Соответственно суммарный риск при равномерном облучении всего тела (всех основных групп органов или тканей, указанных в табл.3.6) в дозе HЕ :

, (3.23)

отсюда

, (3.24)

введя обозначение сТЕ = WТ, получаем

(3.25)

Отношение сТЕ = WТ определяет взвешенный риск облучения данного органа по отношению к взвешенному риску облучения всего организма, т.е. представляет отношение

вероятности возникновения стохастических эффектов в результате облучения какого-либо органа или ткани к вероятности их возникновения при равномерном облучении всего тела. Параметр WТ называют взвешивающим фактором или весовым множителем. При этом ΣWТ=1.

Величина HЕ, определяемая по 3.25. названа эффективной эквивалентной дозой и используется в радиационной безопасности как мера стохастических эффектов при облучении человека.

Таблица 3.6.

Соседние файлы в папке Носовский А.В. Вопросы дозиметрии и радиационная безопасность на атомных электрических станциях