Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1-10 ГОМ.doc
Скачиваний:
7
Добавлен:
23.09.2019
Размер:
210.94 Кб
Скачать

1.Конструкция и принцип действия ацетиленового генератора типа АНВ-1,25

Ацетиленовым генератором называется аппарат, служащий для получения ацетилена разложением карбида кальция водой. Ацетиленовый генератор АН В-1,25. Этот переносной генератор низкого давления работает по системе ВВ в сочетании с системой ВК. Генератор является одноретортным, однопостовым генератором прерывистого действия, может быть использован на монтажных и ремонтных работах в зимних условиях при температуре до —25°С (248 К).

Генератор состоит из корпуса 1 с вваренной в него ретортой 2, в которой помещается загрузочная корзина 3. Корпус генератора делится на две части (нижнюю — газосборник и верхнюю, открытую сверху,— водосборник) горизонтальной перегородкой 25. Эти части сообщаются между собой соединительной циркуляционной трубой 8, доходящей почти до дна газосборника. Между газосборником и водяным затвором помещается карбидный осушитель 22, соединенный с ними резиновыми шлангами 23 и 21.

Генератор заполняется водой через открытую верхнюю часть корпуса до уровня воды 24. Вода в реторту поступает по газоотводящей трубке 28 через отверстие 26 при открывании вентиля 27. Реторта закрывается крышкой 5, рычагом 6 и специальным болтом 7.

Ацетилен, выделяющийся в результате взаимодействия карбида кальция с водой, поступает по газоотводящей трубке 28 в газосборник и вытесняет находящуюся в нем воду через циркуляционную трубу 8 в верхнюю часть генератора. Вода в реторту подается до тех пор, пока она не будет вытеснена из газосборника ниже уровня вентиля 27. При этом по мере выделения ацетилена и возрастания давления ацетилена в газосборнике и реторте вода вытесняется из реторты 2 в камеру 13 через трубу 12. Благодаря вытеснению воды изреторты дальнейшее газообразование замедляется. При отборе газа из газосборника давление ацетилена в нем и реторте падает, вода, вытесненная в камеру, возвращается в реторту и газообразование возобновляется.

При падении давления в генераторе до 2,3—2,7 кПа вода в газосборнике поднимается выше вентиля 27 и начинает также пополнять реторту. Поступление воды в реторту прекращается после того, как давление газа превысит 2,7— 2,8 кПа, т. е. когда уровень воды в газосборнике снова опустится ниже уровня вентиля 27.

Газ при отборе поступает из газосборника в карбидный осушитель 22, загруженный карбидом, после чего проходит в водяной затвор 14, а из него через ниппель 15 в горелку или резак. Карбидный осушитель 22 представляет собой цилиндрический сосуд, имеющий входной и выходной ниппели. Внутри корпуса помещена решетка, на которую загружают карбид кальция. Водяной затвор 14 служит для предохранения генератора от проникновения в него взрывной волны при обратном ударе пламени. Водяной затвор при низких температурах устанавливают в соединительную трубу 8, чтобы предохранить его от замерзания; в теплое время года затвор устанавливают снаружи генератора. Ацетилен поступает в водяной затвор по резиновому шлангу 20. Плотность в месте соединения нижнего донышка с корпусом затвора создается резиновой прокладкой (кольцом) 10. Нижний конец трубки имеет шесть отверстий, через которые ацетилен проходит в корпус затвора. Над отверстиями трубки расположена шайба 9, служащая рассекателем.

Ацетилен, пройдя через воду, залитую до уровня контрольного крана И, вытесняет часть воды в зазор между предохранительной и газоподводящей трубками. Газ выходит из затвора через ниппель 15. При обратном ударе взрывчатая смесь вытесняет воду в предохранительную и газоподводящую трубки до тех пор, пока не выйдет из воды нижнее отверстие предохранительной трубки. Через предохранительную трубу взрывчатая смесь выходит в атмосферу, унося с собой воду. При проходе через отверстие в трубе часть воды задерживается в обечайке 17 и стекает обратно в затвор. Газоотводящая труба закрывается пробкой 16.

2.Температура воспламенения горючей смеси, ее физический смысл.

Температура самовоспламенения — минимальная температура, при которой в нагретой газовоздушной смеси начинается самопроизвольный (т. е. без внешнего подвода теплоты) процесс горения, за счет выделения теплоты горящими частицами газа.

Температура самовоспламенения не является фиксированной для данного газа и зависит от многих параметров: его содержания в газовоздушной смеси, степени однородности смеси, формы и размеров сосуда, в котором смесь нагревается, быстроты и способа ее нагрева, каталитического влияния стенок сосуда, давления, под которым находится смесь. Температуры самовоспламенения горючих газов в кислороде несколько ниже, чем в воздухе. Введение в состав газов балластных примесей (азота и диоксида углерода) приводит к увеличению температуры самовоспламенения. Присутствие в сложных газах компонентов с низкой температурой самовоспламенения приводит к снижению температуры самовоспламенения смеси.

3.Промышленное получение кислорода:

Кислород можно получать химическим способом, электролизом воды и физическим способом, основанным на сжижении атмосферного воздуха и его последующий ректификаций.

Химические способы малопроизводительны и неэкономичны, поэтому в настоящее время их не применяют в промышленности, а лишь иногда используют в лабораторной практике

Электролиз воды, т.е. разложение ее на составляющие(водорода и кислорода), осуществляют в аппаратах, называемыми электролизерами. Через воду, в которую для повышения электропроводности добавляют едкий натр, пропускают постоянный ток; кислород выделяется на аноде, а водород- на катоде. Недостатком данного способа получение кислорода является большой расход электроэнергии. Применение электролиза воды целесообразно при одновременном использовании обоих газов.

Основной способ промышленного получения кислорода во всем мире- физический. Атмосферный воздух представляет собой смесь газов с разными температурами сжижения; его основными компонентами являются азот и кислород.

В установках для получения кислорода и азота из воздуха, последний подвергают очистке от примесей, сжатию в компрессоре до соответствующего давления холодильного цикла (0.6 …. 20 мПа), охлаждению в теплообменниках до температуры сжижения и затем, в жидком виде, разделению (низкотемпературной ректификации) на кислород и азот. Разность температур сжижения кислорода и азота составляет около 13 К, и этого достаточно для их полного разделения в жидкой фазе.

4.Физико-химические свойство кислорода. Способы его получения

При газовой сварке и резке нагрев металла осуществляется высокотемпературным газовым пламенем, получаемым при сжигании горючего газа или паров жидкости в технически чистом кислороде.

Кислород является распространенным элементом на земле, встречающимся в виде химических соединений с различными веществами: в земле — до 50% по массе, в соединении с водородом в воде — около 86% по массе и в воздухе — до 21% по объему и 23% по массе.

Кислород при нормальных условиях (температура 20°С, давление 760 мм рт. ст.) — это бесцветный, негорючий газ, немного тяжелее воздуха, не имеющий запаха, но активно поддерживающий горение.

При нормальном атмосферном давлении и температуре 0°С масса 1 м3 кислорода равна 1,43 кг, а при температуре 20°С и нормальном атмосферном давлении — 1,33 кг.

Кислород имеет высокую химическую активность, образуя соединения со всеми химическими элементами, кроме инертных газов (аргона, гелия, ксенона, криптона и неона). Реакции соединения с кислородом протекают с выделением большого количества тепла, т. е. носят экзотермический характер.

При соприкосновении сжатого газообразного кислорода с маслами, жирами или твердыми горючими веществами, находящимися в распыленном состоянии, происходит их самовоспламенение, что служит причиной взрыва или пожара. Для предупреждения несчастных случаев кислородную аппаратуру необходимо тщательно обезжиривать. Кислород способен образовывать в широких пределах взрывчатые смеси с горючими газами или парами жидкостей в определенных соотношениях кислорода при наличии открытого огня или искры. Технический чистый кислород получают разделением воздуха методом глубокого охлаждения или разложением воды при пропускании через нее электрического тока (электролиз).

Атмосферный воздух представляет собой смесь, содержащую по объему: азота — 78,08%, кислорода — 20,95%, инертные газы — 0,94%. остальное — углекислый газ, водород и другие газы. При получении кислорода из воздуха происходит разделение воздуха на кислород, азот. Аргон и азот так же, как и кислород, применяют при сварке в качестве защитного газа. Сущность способа получения кислорода из атмосферного воздуха заключается в охлаждении его с переходом в жидкое состояние, что достигается при нормальном атмосферном давлении и температуре —182,9°С.

Кислород получают из воздуха в специальных установках, где воздух, проходя через фильтр, очищается от вредных примесей, пыли, углекислоты, а также осушается от влаги. Перерабатываемый воздух сжимается компрессором до давления 200 кгс/см2, после чего охлаждается в теплообменниках до сжижения.

Разделение жидкого воздуха на кислород и азот основано на разнице температур их кипения: температура кипения жидкого азота —196°С, а жидкого кислорода — 182,9°С при нормальном атмосферном давлении. При испарении в газообразную фазу сначала будет переходить азот, как имеющий более низкую температуру кипения, а по мере его выделения жидкость будет обогащаться кислородом.

Кислород направляется в газгольдер, откуда и наполняется в кислородные баллоны под давлением 150—165 кгс/см2. К месту сварки кислород доставляется в кислородных баллонах, а в жидком виде — в специальных сосудах с хорошей теплоизоляцией. Для превращения жидкого кислорода в газ используются газификаторы или насосы с испарителями для жидкого кислорода. При нормальном атмосферном давлении и температуре 20°С 1 дм3 жидкого кислорода при испарении дает 860 дм3 газообразного. Поэтому доставлять кислород к месту сварки целесообразно в жидком состоянии, так как при этом в 10 раз уменьшается масса тары, что позволяет экономить металл на изготовление баллонов, уменьшать расходы на транспортировку и хранение баллонов.

5.Классификация ацетиленовых генераторов:

Ацетиленовые генераторы представляют собой аппараты, предназначенные для получения ацетилена из карбида кальция.

Ацетиленовые генераторы согласно ГОСТ 5190—67 подразделяются на следующие типы и системы.

По давлению вырабатываемого ацетилена:

генераторы низкого давления — до 0,1 кгс/см2;

генераторы среднего давления — от 0,1 до 0,7 кгс/см2 и от 0,7 до 1,5 кгс/см2.

По способу применения:

передвижные генераторы и стационарные генераторы.

По способу взаимодействия карбида кальция с водой:

генераторы системы KB «карбид в воду» (при этом количество воды в зоне реакции постоянно, а количество подаваемого карбида дозируется) ;

генераторы системы ВК «вода на карбид» с вариантами «мокрого» и «сухого» процессов (при этом одновременная загрузка карбида кальция постоянна, а количество подаваемой на реакцию воды дозируется);

генераторы системы ВВ «вытеснением воды» (при этом периодичность контакта карбида кальция с водой осуществлеятся перемещением уровня воды).

По номинальной производительности: производительность генераторов может быть от 0,50 до 160,0 м3/ч.

6.Сущность поверхностной резки металлов. Влияние режимов резки на качество резки.

Поверхностной кислородной резкой называется процесс снятия кислородной струей слоя металла.

Поверхностная кислородная резка отличается от разделительной тем, что струя режущего кислорода направляется под острым углом 15-40° к поверхности металла и перемещается с большой скоростью вдоль этой поверхности . Несмотря на внешнее различие поверхностной и разделительной кислородной резки сущность этих способов одна и та же. В обоих случаях подогревающее пламя нагревает металл до температуры воспламенения, происходит сгорание металла в ограниченном объеме и удаление образовавшегося при этом шлака.

При поверхностной резке источником нагрева металла является не только подогревающее пламя резака, но и расплавленный шлак, который, перемещаясь по поверхности металла, подогревает последующие слои металла. Шлак, получающийся при поверхностной кислородной резке, отличается от шлака при разделительной кислородной резке большим содержанием несоженного железа. В связи с сокращением времени подогрева при поверхностной кислородной резке увеличивается скорость резки и повышается производительность труда. Поверхностная кислородная резка нашла большое распространение в металлургической промышленности для удаления поверхностных дефектов литья, в сварочном производстве для вырезки дефектных участков швов и при выполнении ремонтных работ. Процесс поверхностной кислородной резки протекает устойчиво только в том случае, если направление перемещения резака совпадает с направлением кислородной струи. При равномерном перемещении резака в направлении образуемой канавки подогревающее пламя может быть выключено.

Существуют два основных способа поверхностном кислородной резки строжка и обточка. При строжке резак, как и проходной резец, снимает с поверхности слой металла определенной ширины и длины Слой металла может быть снят за один или несколько проходов в зависимости от глубины снимаемого слоя. При обточке резак, как и токарный резец, совершает поступательное движение вдоль круглой вращающейся заготовки. В результате обточки снимается слой металла определенной глубины. Преимуществом процесса поверхностной кислородной резки по сравнению с другими способами удаления поверхностных слоев металла является высокая производительность, позволяющая удалять ручным резаком до 5 кг металла в минуту

Вместе с тем, при поверхностной кислороднои резке слои металла, прилегающий к обрабатываемой поверхности, быстро нагревается и охлаждается, в результате чего у высокоуглеродистых и легированных сталей могут возникать на поверхности трещины Склонность к трещинообразованию чем больше, чем больше размеры канавки и выше содержание с стали углерода и других легирующих элементов

Нагрев металла до температуры воспламенения осуществляют при наклоне мундштука на 70-80° к поверхности металла. После того как металл нагрет, мундштук устанавливают под углом 15-40°, пускают струю режущего кислорода и перемещают резак с заданной скоростью Глубина и ширина канавки могут быть различными. Глубина канавки увеличивается при увеличении угла наклона мундштука, повышении давления режущего кислорода и уменьшения скорости перемещения резака вдоль канавки. Ширина канавки определяется диаметром канала режущей струи кислорода

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]