
- •Теории химического строения
- •Основные положения теории бутлерова:
- •2. Положение о зависимости свойств от химического строения.
- •3. Положение о взаимном влиянии атомов.
- •6. Классификация органических реакций по механизму
- •Пространственное строение предельных углеводородов
- •Способы получения предельных углеводородов
- •Лабораторные способы получения алканов
- •Физические свойства предельных углеводородов
- •I. Замещение
- •II. Окисление
- •IV. Изомеризация предельных углеводородов
- •Номенклатура
- •Способы получения
- •Химические свойства олефинов
- •1. Реакции присоединения
- •2. Реакции окисления
- •3. Реакции полимеризации
- •4. Реакции аллильного замещения
- •Физические свойства
- •Особенности электронного строения диенов с сопряженными связями
- •1. Реакции присоединения
- •Классификация
- •Способы получения
- •Физические свойства
- •Химические свойства
- •I.Реакции нуклеофильного замещения
- •Реакции отщепления галогена
- •III. Реакции отщепления галогеноводорода
- •Карбонильные соединения
- •Способы получения
- •Отличие химических свойств альдегидов и кетонов
- •Химические свойства
- •III. Реакции окисления и восстановления
- •Реакции восстановления
- •Карбоновые кислоты
- •Номенклатура
- •Способы получения
- •4) Дегидратация кислот
- •Определение
- •Классификация
- •Изомерия
- •Получение
- •Физические свойства
- •Химические свойства
- •Основные признаки ароматичности
- •Ароматические соединения
- •Гомологический ряд, изомерия и номенклатура ароматических углеводородов
- •Названия ароматических радикалов
- •Способы получения ароматических углеводородов
- •Б. Синтетические способы получения ароматических углеводородов
- •Химические свойства
- •Механизм электрофильного замещения
- •Нитрование гомологов бензола
- •Реакции присоединения (нетипичны)
- •Галоидпроизводные ароматических углеводородов Классификация, изомерия, номенклатура
- •Получение
- •Физические свойства галогенопроизводных ароматических углеводородов
- •Химические свойства
- •Нитросоединения ароматического ряда
- •1.Нитросоединения с нитрогруппой в ядре
- •Физические свойства
- •Химические свойства
- •II. Реакции в ядре
- •II. Нитросоединения с группой no2 в боковой цепи
- •Способы получения
- •Химические свойства ароматических нитросоединений с группой no2 в боковой цепи
- •Ароматические сульфокислоты
- •Физические свойства
- •Химические свойства
- •I тип реакций. Реакции, характерные для органических кислот.
- •II тип реакции. Восстановление сульфогруппы
- •III тип реакций. Реакции нуклеофильного замещения сульфогруппы
- •IV тип реакций. Реакции электрофильного замещения в ядре идут в соответствии с правилами замещения
- •27. Ариламины. Ароматические амины Классификация
- •I. По положению аминогруппы относительно ароматического ядра.
- •II. По количеству радикалов, связанных с азотом
- •III. По количеству аминогрупп
- •Получение
- •Физические свойства
- •Химические свойства
- •II. Реакции замещения водорода в аминогруппе
- •IV. Окисление
- •V. Реакции замещения в ароматическом ядре
- •VI. Реакции конденсации ароматических аминов с другими органическими и неорганическими соединениями
- •Диазо- и азосоединения
- •Ароматические диазосоединения
- •1. Реакция диазотирования - -получение солей диазония.
- •Химические свойства солей диазония
- •I. Реакции с выделением азота
- •II. Реакции диазосоединений без выделения азота
- •Азокрасители
- •Связь строения с цветностью
- •Ароматические оксисоединения
- •Классификация
- •Физические свойства фенолов
- •Химически свойства фенолов
- •I. Реакции подвижного водорода в группе он
- •II. Реакции электрофильного замещения в ядре
- •III. Окислительно-восстановительные реакции
- •IV. Конденсация фенолов с другими органическими соединениями
- •Ароматические альдегиды и кетоны
- •Способы получения
- •II. Частные способы получения альдегидов и кетонов
- •Физические свойства
- •Химические свойства
- •Ароматические кислоты
- •Способы получения
- •Физические свойства
- •Химические свойства
- •Полициклические ароматические углеводороды и их производные
- •Ароматические углеводороды с изолированными ядрами
- •Способы получения
- •Физические свойства
- •Химические свойства
- •Наиболее важные группы многоядерных соединений. Группа дифенила
- •Группа трифеиилметана
- •Полициклические ароматические углеводороды с конденсированными ядрами
- •Получение
- •Физические свойства
- •Особенности химических свойств
- •Ароматические моноциклические пятичленные гетероциклы
- •Номенклатура гетероциклических соединений
- •Способы получения
- •Физические свойства
- •34. Шестичленные гетероциклы с одним гетероатомом
- •Получение
Пространственное строение предельных углеводородов
Молекула метана рассматривается как тетраэдр, в центре которого расположен атом углерода, а в четырех вершинах – связанные с углеродом атомы водорода. У молекулы метана при таком строении все четыре связи С-Н расположены в пространстве совершенно симметрично, что обуславливает их полную равнозначность
Углы между связями С-Н одинаковы и составляют 109о28/. Пространственные модели молекул, содержащих два и более атомов углерода, можно представить себе как сочетание нескольких тетраэдров, имеющих общие вершины Валентные углы в этом случае также будут иметь величину 109о28/.
Физические свойства парафинов. способы их получения.
Способы получения предельных углеводородов
1. Промышленные методы выделения из природных и попутных газов.
выс. Р фракц. перегонка
г
аз
сжиженный газ
индивид. углев.
низкая Т под давлением
2. Из нефти. (фракционная перегонка)
Петролейный эфир |
40-75оС |
Бензин |
70-130оС |
Керосин |
150-300оС |
Мазут |
>300оС |
3. Гидрогенизация бурых углей (Бергиус):
Fe, T=4500C, P=200 ат
nC + (n+1)H2 CnH2n+2
Лабораторные способы получения алканов
1. Реакция Вюрца:
СН3Вr + 2 Nа + ВrСН3 → 2 NаВr + СН3-СН3
2
. Сплавление
Nа- или К-солей карбоновых
кислот со щелочами:
О
cплавление
С
Н3-С
+ NaOH
Na2CО3
+СН4
ONa
3. Восстановление различных галогенопроизводных углеводородов
|
+ 2H HCl + СН3-СН2-СН3 |
Физические свойства предельных углеводородов
1. СН4-С4Н10 – газы, С5Н12 – С15Н32 – жидкости; С16Н34 и более – твердые вещества. Температура кипения обуславливается силами межмолекулярного притяжения. Чем больше число атомов в молекуле, тем больше эти силы. Ткип алканов постепенно возрастает с увеличением молекулярного веса. Углеводороды разветвленного строения имеют более низкую температуру кипения, т.к. их молекулы имеют менее плотную упаковку и межмолекулярные силы притяжения слабее.
Температура плавления также постепенно повышается с увеличением молекулярного веса, но у соединений разветвленного строения она выше, чем у нормальных. Основной фактор, влияющий на температуру плавления, - прочность межмолекулярных связей в кристалле, которая зависит от геометрической формы упаковки молекул в кристаллической решетке. Чем симметричнее построена молекула, тем прочнее ее упаковка в кристалле, тем выше Тпл
Плотность жидких алканов намного ниже, чем у воды, и самая низкая среди других углеводородов, т.к. наибольшее относительное содержание более легкого водорода. Плотность составляет 0,62-0,77 г/см3. Плотность разветвленных изомеров меньше плотности нормальных изомеров, т.к. упаковка молекул более рыхлая.
Растворимость. Предельные углеводороды имеют неполярные или малополярные связи. В воде практически нерастворимы. Лучше других растворяется метан.
Алканы хорошо растворяются в галоидпроизводных. Все алканы бесцветны.
Химические свойства.
Предельные
углеводороды имеют в составе молекул
только малополярные и слабополяризующиеся
-связи,
которые отличаются высокой прочностью,
поэтому в обычных условиях они являются
веществами мало химически активными
по отношению к полярным реагентам: не
взаимодействуют с концентрированными
кислотами, целочами, щелочными металлами,
окислителями