Скачиваний:
32
Добавлен:
02.05.2014
Размер:
163.84 Кб
Скачать

Структурная организация интерфейсов

Составными физическими элементами связей интерфейса являются электрические цепи, называемые линиями интерфейса.Различают одно- и двунаправленные линии. Если на линии работает только один передатчик, линия считается однонаправленной, в этом случае используется традиционное схемотехническое решение приемопередающих узлов – один источник сигнала подключен к нескольким приемникам. В случае двунаправленных линий количество передающих устройств на линии больше одного, и это требует применения в передающих устройствах специальных решений – выходные каскады с высокоимпедансным состоянием (т. н. «третье» состояние), с открытым коллектором, с открытым стоком. При этом средства управления интерфейсом должны «регулировать» активность передающих устройств таким образом, чтобы в каждый момент времени передачу вело только одно устройство.

Часть линий, сгруппированных по функциональному назначению, называется шиной,а вся совокупность линий—магистралью,В системе шин интерфейсов условно можно выделить две магистрали: информационного канала и управления информационным каналом.

По информационной магистралипередаются коды данных, адресов, команд и состояний устройств. Аналогичные наименования присваиваются соответствующим шинам интерфейса.

Коды данныхпредставляют информацию о процессах, протекающих в ВС. Обычно в машинных интерфейсах используется двоичное кодирование в формате машинного кода. Линии ШД обычно нумеруютсяDATXX, где ХХ – двоичный вес линии. Т.е. по линииDAT00 передается младший разряд машинного слова, по линииDAT01 – разряд с весом 2**1 и т.д.

Коды адресовпредназначены для выборки в магистрали устройств, узлов устройства, ячеек памяти. Обычно для адресации используется позиционный двоичный код (двоичный номер объекта), однако нередко применяется и кодирование, при котором каждому устройству выделяется отдельная линия адреса. Примером реализации такой системы адресации является интерфейс КАМАК

Коды командиспользуются для управления функционированием устройств и обеспечения сопряжения между ними. В стандартах на интерфейс регламентируется минимально необходимый набор команд, который может быть расширен пользователем за счет резервных полей в кодах. По функциональному назначению различают адресные команды управления обменом информации между устройствами, команды изменения состояния и режимов работы. К наиболее распространенным командам относятся: «Чтение», «Запись», «Конец передачи», «Запуск».

Коды состоянияпредставляют собой сообщения, описывающие состояния устройств сопряжения. Коды формируются в ответ на действия команд или являются отображением состояний функционирования устройства, таких как «Занятость устройства», «Наличие ошибки», «Готовность устройства» к приему или передаче информации и т. п.

В большинстве случаев коды данных, адресов, команд и состояний передаются по шинам интерфейса с разделением времени за счет мультиплексирования шин. Это достигается введением дополнительных линий для обозначения типа передаваемой информации, называемыхлиниями идентификации.Их применение позволяет существенно сократить общее число линий информационной магистрали интерфейса, однако при этом происходит снижение быстродействия передачи информации.

Магистраль управления информационным каналомпо своему функциональному назначению делится на ряд шин:

управления обменом,

передачи управления,

прерывания,

специальных управляющих сигналов.

Шина управления обменомвключает в себя линии синхронизации передачи информации. В зависимости от принятого принципа обмена (асинхронного, синхронного) число линий может изменяться от одной до трех. Асинхронная передача происходит при условии подтверждения приемником готовности к приему и завершается подтверждением о приеме данных. При синхронной передаче темп выдачи и приема данных задается регулярной последовательностью сигналов. Линии шины управления обменом в случае двунаправленной информационной магистрали выполняются, как правило, двунаправленными.

Шина передачи управления выполняет операции приоритетного занятия магистрали информационного канала. Наличие этой шины определяется тем, что взаимодействие в большинстве интерфейсов выполняется по принципу «ведущий-ведомый» («задатчик-исполнитель»), при котором «ведущее» устройство может брать управление шиной на себя в определенные моменты времени. При наличии в системе нескольких устройств, способных выполнять функции «ведущего», возникает проблема приоритетного распределения ресурсов шины (арбитража). Состав и конфигурация линий этой шины зависят от структуры управления интерфейсом. Различают децентрализованную и централизованную структуры. В интерфейсах, предназначенных для объединения только двух устройств (соединение типа «точка-точка»), шина передачи управления отсутствует.

Шина прерыванияприменяется в основном в машинных интерфейсах ЭВМ и программно-модульных систем. Основная ее функция — идентификация устройства, запрашивающего сеанс обмена информацией. Идентификация состоит в определении контроллером (процессором) исходной информации о запрашиваемом устройстве. В качестве информации об устройстве используется адрес источника прерывания либо адрес программы обслуживания прерывания (вектор прерывания).

Шина специальных управляющих сигналоввключает в себя линии, предназначенные для обеспечения работоспособности и повышения надежности устройств интерфейса. К этим линиям относятся: линии питания, контроля источника питания, тактирующих импульсов, защиты памяти, общего сброса, контроля информации и т. п.

В соответствии с существующим стандартом структуры связей интерфейсовподразделяются на следующие классы: магистральную; радиальную; цепочечную и смешанную (комбинированную). Тем не менее такое разделение не позволяет дать детального представления о пространственном размещении функциональных устройств и устройств сопряжения, а также о возможностях взаимосвязи этих устройств, т. е. их связности.Связность линииопределяет возможность двустороннего или одностороннего направления передачи сигналов, т. е. передачи в прямом и обратном направлениях. Для однонаправленных линий связи возрастает пропускная способность информационной магистрали, упрощаются приемопередающие элементы и улучшается согласование линий. Однако применение однонаправленных линий приводит к увеличению общего числа линий.

СИСТЕМЫ ВВОДА-ВЫВОДА ПЕРСОНАЛЬНЫХ КОМПЬЮТЕРОВ

Наиболее наглядно и полно можно проследить и прочувствовать проблемы и тенденции развития систем ввода-вывода при рассмотрении ретроспективы эволюции интерфейсов и структур систем ввода-вывода на примере персональных компьютеров типа IBMPC

В начале эры персональных компьютеров частота работы процессора составляла 10 МГц, при этом на выполнение даже самых простейших операций процессор затрачивал несколько тактов. В таких условиях для обеспечения бесперебойной работы процессора было достаточно всего 4 миллионов обращений к памяти в секунду, что соответствовало циклу работы в 250 нс. Этим условиям удовлетворяла одношинная структура систем ввода-вывода, когда все устройства компьютера, включая ОЗУ, общались с процессором через общую шину (рис.1a), которую называли системной. Все интерфейсы ПУ подключались к этой шине. Наиболее распространенной системной шиной в этот период стала сначала 8 разрядная, затем 16 разрядная шинаISA, работающая на частоте 8 МГц.

С ростом частоты работы ПК и изменения времени доступа к ОЗУ пропускная способность шины ISAстала тормозить работу процессора. Решение проблемы нашли в выделении канала передачи данных МП-ОЗУ в отдельную шину, построенную на базе внешнего интерфейса МП, и изолированную от медленной шиныISAпосредством контроллера шины данных. Это повысило производительность работы центрального процессора. Все ПУ продолжали взаимодействовать с центральным процессором через системную шину (см. рис. 1б).

С дальнейшем ростом частоты работы МП тормозом в работе стало ОЗУ. Тогда ввели дополнительную высокоскоростную кэш-память, что уменьшило простои МП. На определенном этапе развития компьютеров стали широко использовать мультимедиа. Сразу выявилось узкое место во взаимодействии центрального процессора и видеокарты. Имеющиеся системные шины ISA, ЕISAне удовлетворяли этим условиям.

Выход был найден с разработкой и внедрением высокоскоростных локальных шин, посредством которых можно было связаться с памятью, на этой же шине работали жесткие диски, что также повышало качество вывода графической информации. Первой такой шиной была шина VL-bus, практически повторявшая интерфейс МПi486. Затем появилась локальная шина РСI. Она была процессорно-независимой и поэтому получила наибольшее распространение для последующих типов МП. Эта шина имела частоту работы 33 МГц и при 32-х разрядных данных обеспечивала пропускную способность в 132 Мбайт/сек (см. рис. 1.9в). Системная шинаISAпо-прежнему использовалась в компьютерах, что позволяло применять в новых компьютерах огромное количество ранее разработанных аппаратных и программных средств.

В такой системе ввода-вывода различные ПУ подключались к разным шинам. Медленные - к ISA, а высокоскоростные - к РСI. С появление шины РСIстало целесообразным использовать высокоскоростные параллельные и последовательные интерфейсы ПУ (SCSI,ATA,USB). На этом этапе системной стали называть шину МП, через которую он взаимодействовал с ОЗУ. Шина РСIиISAи подобные другие назвали шинами ввода-вывода или шинами расширения. Действительно, эти шины как бы расширяли число устройств, работающих с ЦПр, и их основной функцией стало обеспечение процессов ввода и вывода информации.

Рис. 1. Эволюция шинной архитектуры

Появление шины РСIне сняло всех проблем по качественному выводу визуальной информации для 3-х мерных изображений, "живого" видео. Здесь уже требовались скорости в сотни Мбайт/сек. В 1996г. фирмаIntelразработала новую шинуAGP, предназначенную только для связи ОЗУ и процессора с видеокартой монитора. Эта шина обеспечивает пропускную способность в сотни Мбайт/сек. Она непосредственно связывает видеокарту с ОЗУ минуя шину РСI.

Таким образом, спустя годы снова пришли к многомагистральной структуре ввода-вывода с радиально-магистральными интерфейсами ПУ. Все шины систем ввода-вывода объединяются в единую транспортную среду передачи информации с помощью специальных устройств - мостов.

Мост – устройство, применяемое для объединения шин, использующих разные или одинаковые протоколы обмена. Мост – это сложное устройство, которое осуществляет не только коммутацию каналов передачи данных, но и производит управление соответствующими шинами. Для обеспечения выполнения функций интерфейсов, входящих в систему ввода-вывода, применяются специальные контроллеры и схемы. К ним можно отнести контроллеры прерываний и прямого доступа к памяти, таймер, часы реального времени, буферы шин данных, дешифраторы, мультиплексоры, регистры и другие логические устройства.

В первых компьютерах, построенных с использованием микропроцессоров, контроллер и другие устройства строились на базе набора интегральных схем малой, средней и большой степени интеграции. Адаптеры, таймер и др. выпускались в виде отдельных микросхем (8250, 8255, 8259, 8237 и т.д.)

С повышением производительности компьютеров и увеличением степени интеграции все вышеперечисленные устройства и схемы стали объединяться в микросхемы со сверхбольшой степенью интеграции, образуя специальные наборы интегральных схем, называемых «чипсет» (ChipSet).

В настоящее время управление потоками передаваемых данных производится с помощью мостов и контроллеров, входящих в ChipSet. ИменноChipSetопределяет основные особенности архитектуры компьютера и, соответственно, достигаемый уровень производительности в условиях, когда лимитирующим фактором становится не процессор, а его окружение – память и система ввода-вывода. Принято называть две главные микросхемы южный мост и северный мост. Северный мост обслуживает системную шину, шину памяти,AGPи является главным контроллеромPCI. Южный мост обслуживает работу с ПУ (шиныPCI,IDE).

Для компьютеров среднего класса, использующих процессоры Celeron,PentiumIIиPentiumIII, фирмаIntelвыпустила чипсет с новой архитектуройi810, состоящий из 3-х микросхем.

Особенностями чипсета этого типа являются следующие:

использование хабовой архитектуры, в чипсете имеется три микросхемы – хаба, которые объединяются не с помощью медленной шины PCI, как в предыдущих случаях, а с помощью специальной внутренней шины,работающей на частоте 266 МГц;

встроенное, интегрированное в микросхему 2Д/3Д графическое ядро, с использованием в качестве видеопамяти быстродействующей (800 Мбайт/сек и более) системной памяти, работающей по новым технологиям – DirectAGPиDynamicVideoMemoryTechnology(D.V.M.T.), что обеспечивает большую пропускную способность по сравнению с обычной шинойAGP, работающей со скоростью 528 Мбайт/сек, это существенно удешевляет стоимость видеокарт;

отсутствие шины PCI, как внутренней шины, для чипсета она является внешней шиной, подобнойISA.

На рис.1.12 показана система ввода-вывода на основе чипсета i810. Функции микросхем чипсета следующие: контроллер памяти и видео, контроллер ввода-вывода и хаб фирменного программного обеспечения.

Рис. 1.12. Чипсет Intel i810

Этот чипсет имеет следующие характеристики:

  • поддержка однопроцессорной конфигурации;

  • системная шина 66 и 100 МГц 64 разряда;

  • интерфейс памяти SDRAM на 100 МГц;

  • интегрированное 2Д/3Д графическое ядро;

  • поддержка шины PCI на 33 МГц, совместимой со спецификацией версии 2.2 с числом слот 4 или 8 ;

  • управление энергопотреблением;

  • интегрированный IDE контроллер с поддержкой Ultra ATA/66;

  • поддержка интерфейса LPC (Low Pin Count), шина 4 бита, 33 МГц, заменяет ISA при подключении контроллера гибкого диска и портов ввода-вывода;

  • хранение системного и видео BIOS и аппаратный датчик случайных чисел;

  • отсутствие ISA.

Как следует из вышеизложенного, системы ввода-вывода и соответствующие им чипсеты являются главными средствами, позволяющими реализовать потенциальные возможности центральных процессоров.