Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
реферат чугун.docx
Скачиваний:
76
Добавлен:
22.09.2019
Размер:
154.15 Кб
Скачать

Реферат

На тему: Чугуны

Выполнил:

Студент группы 2ТСП

Серов Иван.

Проверил:

Мастер П/О

Иванов Игорь Алексеевич.

Г. Тверь 2012

1. Введение.

Чугуном называется сплав железа с углеродом, содержащий углерода от 2,14 до 6,67%.

Чугун — дешевый  машиностроительный  материал,  обладающий хорошими литейными качествами. Он является сырьем для выплавки стали. Получают чугун из железной руды с помощь топлива и флюсов.

Получение чугуна — сложный химический процесс. Он состоит из трех стадии: восстановления железа из окислов, превращения железа в чугун и шлакообразования. Подробно этот процесс рассматривается в курсе химии.

Свойства чугуна зависят главным образом от содержания в нем углерода и других примесей, неизбежно входящих в его состав: кремния (до 4,3%), марганца (до 2%), серы (до 0,07%) и фосфора (до 1,2%).

2.Общая информация

Углерод — один из главных элементов в чугуне. В зависимости от количества и состояния входящего в сплав углерода получаются те или иные сорта чугуна. С железом углерод соединяется двояко: в жидком чугуне углерод находится в растворенном состоянии, а в твердом — в химически связанном с железом или в виде механической примеси в форме мелких пластинок графита.

Кремний — важнейший после углерода элемент в чугуне, он увеличивает его жидкотекучесть, улучшает литейные свойства и делает чугун более мягким.

Марганец повышает прочность чугуна.

Сера в чугуне — вредная примесь, вызывающая красноломкость (образование трещин в горячих отливках). Она ухудшает жидкотекучесть чугуна, делая его густым, вследствие чего он плохо заполняет форму.

Фосфор понижает механические свойства чугуна и вызывает хладноломкость (образование трещин в холодных отливках).

3. Классификация чугунов.

В зависимости от состояния, в котором углерод находится в чугуне, чугун подразделяется на белый (углерод в химическом соединении с железом в виде цементита FeC) и серый (свободный углерод в виде графита).

Белый чугун: очень твердый и хрупкий, плохо поддается отливке, трудно обрабатывается режущим инструментом. Он обычно идет на переплавку в сталь или на получение ковкого чугуна и поэтому называется передельным.

Серый чугун наиболее широко применяется в машиностроении. Он мало пластичен и вязок, но легко обрабатывается резанием, применяется для малоответственных деталей и деталей, работающих на износ. Серый чугун с высоким содержанием фосфора (0,3—1,2%) жидкотекуч и используется для художественного литья.

Серый чугун маркируется буквами и двумя числами, например СЧ 120-280. Буквы СЧ обозначают серый чугун, первое число — предел прочности (в МПа) при испытании на разрыв, а второе число — предел прочности (также в МПа) при испытании на изгиб.

В зависимости от химического состава и назначения чугуны подразделяют на легированные, специальные, или ферросплавы, ковкие и высокопрочные чугуны.

Легированный чугун наряду с обычными примесями содержит элементы: хром, никель, титан и др. Эти элементы улучшают   твердость,   прочность,   износостойкость.   Различают хромистые,  титановые,   никелевые  чугуны.   Их   применяют  для

изготовления   деталей   машин   с   повышенными   механическими свойствами, работающих в водных растворах, в газовых и других агрессивных средах.

Специальный чугун, или ферросплав, имеет повышенное содержание кремния или марганца. К нему относятся ферромарганец, содержащий до 25% марганца, и ферросилиций, содержащий 9—13% кремния и 15—25% марганца. Эти чугуны применяются при плавке стали для ее раскисления, т.е. для удаления из стали вредной примеси — кислорода.

Ковкий чугун получают термообработкой из белого чугуна. Он получил свое название из-за повышенной пластичности и вязкости (хотя обработке давлением не подвергается). Ковкий чугун обладает повышенной прочностью при растяжении и высоким сопротивлением удару. Из ковкого чугуна изготовляют детали сложной формы: картеры заднего моста автомобилей, тормозные колодки, тройники, угольники и т. д.

Маркируется ковкий чугун двумя буквами и двумя числами, например КЧ 370-12. Буквы КЧ означают ковкий чугун, первое число—предел прочности (в МПа) на разрыв, второе число — относительное удлинение (в процентах), характеризующее пластичность чугуна.

Высокопрочный чугун получают введением в жидкий серый чугун специальных добавок. Он применяется для изготовления более ответственных изделий, заменяя сталь (коленчатых валов, поршней, шестерен и др.). Маркируется высокопрочный чугун также двумя буквами и двумя числами, например ВЧ 450-5. Буквы ВЧ обозначают высокопрочный чугун, а числа имеют то же значение, что и в марках ковкого чугуна

Особенности сварки чугунов.

Высокое содержание углерода резко снижает пластичность чугунов, делает применение сварки затруднительным, требует разработки при этом специальных приемов. Так, при дуговых способах сварки деталей или заварке дефектов литья требуется предварительный и сопутствующий подогрев до температуры 600 - 650° С, чтобы предупредить появление трещин из-за отбеливания околошовной зоны. В случае холодной сварки чугуна необходимо обеспечить требуемую степень графитизации металла шва и околошовной зоны в условиях быстрого охлаждения.

Теплофизические особенности и технические возможности электрошлакового процесса позволили успешно применить его для сварки чугунных деталей большого сечения при изготовлении и ремонте конструкций. Широкие возможности регулирования термического цикла при ЭШС позволили в значительной мере избежать отбеливания металла шва и околошовной зоны. В ИЭС им. Е. О. Патона впервые были сварены образцы из серого чугуна толщиной 30-100 мм. ЭШС осуществляется с применением флюса АНФ-6 электродами большого сечения того же состава, что и основной металл, при сварочном токе 600-900 А, напряжении на шлаковой ванне 36-38 В, зазоре между кромками 40 - 43 мм. Исследование химического состава, структуры и механических свойств сварного соединения показало, что при ЭШС они вполне удовлетворительные.

М агниевый высокопрочный чугун труднее поддается сварке, чем обычный серый чугун. Режимы ЭШС металла толщиной 100 мм пластинчатыми электродами сечением 18 X 100 мм приведены в таблице ниже.

П ри ЭШС магниевого чугуна основная задача состоит в получении ферритно-перлитной структуры с шаровидным ферритом без зон отбеливания. При этом обеспечиваются высокие механические свойства сварного соединения. В таблице 9.56 приведен химический состав (%) металла шва, он практически не зависит от режима.

 

Увеличение погонной энергии сварки ведет к отбеливанию металла шва из-за большой скорости охлаждения сварочной ванны и наличия магния. При низком содержании магния графит имеет шаровидную форму, но с увеличением погонной энергии в шве появляется пластинчатый графит, что приводит к образованию трещин. Устранить участки с пластинчатым графитом можно увеличением содержания магния в шве с одновременным повышением содержания графитизаторов. В зоне термического влияния отбела не наблюдается.

Для получения стабильных механических свойств сварного соединения целесообразно применять флюсы, снижающие содержание фосфора в металле шва.

При исправлении с помощью ЭШС дефектов литья (сквозные и несквозные крупные раковины, трещины и др.), а также изломов, трещин, возникающих в процессе эксплуатации, удалять дефектные места и разделывать кромки под сварку необходимо механическими способами. На рисунке ниже показаны примеры подготовки дефектных мест под электрошлаковую заварку.

Техника ЭШС чугуна электродами большого сечения на автомате или стержнями полуавтоматическим способом практически ничем не отличается от сварки стальных заготовок и арматуры. Минимальная площадь поперечного сечения дефекта должна быть 9-10 см2. Если площадь дефекта превышает 80-90 см2, его следует разбивать на участки с помощью графитовых или чугунных пластин-проставок и заваривать последовательно.

Дефекты сечением более 30 см2 целесообразно заваривать сварочным автоматом. Предварительный подогрев осуществляют шлаковым процессом с применением нерасходуемых неплавящихся электродов. В отдельных случаях можно использовать заварку всего сечения нерасходуемым электродом с периодической засыпкой в шлаковую ванну шихты небольшими дозами, чтобы избежать опасности переохлаждения шлаковой ванны. В таблице ниже приведены результаты механических испытаний образцов, изготовленных из сварного соединения.

Заслуживают внимания работы по ЭШС чугуна электродами из стали марки СтЗ или Ст4 под флюсом АН-348-А. Добавка в шлак мела (2-3%) повышает активность шлака по отношению к сере и фосфору. При исследовании свойств сварного соединения получены хорошие результаты.

Анализ особенностей ЭШС чугуна позволяет заключить, что применение этого высокомеханизированного и производительного метода сварки при изготовлении сварно-литых конструкций и заварке дефектов дает определенные преимущества как в отношении качества сварного соединения, так и с точки зрения его механизации.