
- •2. Основные термодинамические параметры состояния.
- •3.Теплота и работа
- •4.Уравнение состояния идеальных газов.
- •5.Первый закон термодинамики.
- •Аналитическое выражение первого закона термодинамики.
- •Энтальпия.
- •Теплоемкость газов. Энтропия.
- •6. Второй закон термодинамики.
- •7. Термодинамические процессы идеальных газов (изобарный, изотермический, изохорный)
- •8. Термодинамические процессы идеальных газов (политропные, адиабатные)
- •9. Термодинамический кпд и холодильный коэффициент циклов.
- •10. Прямой обратимый цикл Карно.
- •11. Обратный обратимый цикл Карно.
- •12. Циклы паротурбинных установок. Циклы Ренкина на насыщенном и перегретом паре.
- •13. Классификация холодильных установок, хладагенты и требования к ним.
- •14. Основные виды переноса теплоты
- •15. Конвективный теплообмен. Виды движения теплоносителей.
- •16. Классификация теплообменных аппаратов. Теплоносители.
- •17. Расчет рекуперативных Теплообменных аппаратов.
- •18. Типы тепловых электростанций. Классификация.
- •19. Технологический процесс преобразования химической энергии топлива в электроэнергию на тэс.
- •20. Классификация атомных реакторов
- •21. Устройство о ядерных реакторов различного типа
- •22. Ресурсы, потребляемые аэс, ее продукция, отходы производства
- •23. Технологические схемы производства электроэнергии на аэс.
- •24. Паровые турбины. Устройство паровой турбины
- •25. Проточная часть и принцип действия турбины
- •26.Типы паровых турбин и область их использования
- •27. Основные технические требования к паровым турбинам и их характеристики
- •29. Гту с изохорным подводом теплоты. Термодинамический кпд и работа цикла с изохорным подводом теплоты. Достоинства и недостатки гту.
- •30. Пгу. Их классификация. Достоинства и недостатки.
- •31. Котельные установки. Общие понятия и определения
- •32. Классификация котельных установок.
- •33. Каркас и обмуровка котла.
- •34. Тепловой и эксергетический балансы котла. Составляющие приходной части теплового баланса.
- •35. Общее уравнение теплового баланса ку. Составляющие расходной части теплового баланса.
- •36. Схемы подачи воздуха и удаления продуктов сгорания
- •37. Естественная и искусственная тяга. Принцип работы дымовой трубы.
- •38. Паросепарирующие устройства котлов
- •39. Пароперегреватели. Назначение, устройство, виды.
- •40. Водяные экономайзеры ку. Назначение, конструкция, виды
- •41. Воздухоподогреватели ку. Назначение, конструкция, виды
- •42. Топливо, состав и технические характеристики топлива Понятие условного топлива, высшей и низшей теплоты сгорания
- •43. Классификация систем теплоснабжения и тепловых нагрузок
- •44. Тепловые сети городов
- •45. Теплоэлектроцентрали. Преимущества раздельной и комбинированной выработки электроэнергии и тепла
- •47. Классификация нагнетателей. Области применения
- •48. Производительность, напор и давление, создаваемые нагнетателем
- •49. Мощность и кпд нагнетателей. Совместная работа насоса и сети.
- •50. Классификация двигателей внутреннего сгорания.
- •52. Основные теплоносители теплообменных аппаратов
- •54. Устройство двс. История развития и параметры работы двс Отличия реальной и идеальной индикаторных диаграмм двс.
- •55. Нетрадиционные и возобновляемые источники энергии
- •56. Прямое преобразование солнечной энергии. Солнечные водоподогреватели.
- •57. Подогреватели воздуха. Солнечные коллекторы.
- •58. Преобразование солнечной радиации в электрический ток
- •59. Гидроэнергетика. Основные принципы использования энергии воды. Устройство русловой гэс
- •60. Приливные электростанции
- •61.Ветрогенераторы. Возможность применения. Устройство и категории ветрогенераторов.
- •62. Типы ветрогенераторов. Установки с горизонтальной осью вращения. Преимущества и недостатки.
- •63. Типы ветрогенераторов. Установки с вертикальной осью вращения. Преимущества и недостатки.
- •64. Водородная энергетика
- •Принцип работы топливного элемента:
13. Классификация холодильных установок, хладагенты и требования к ним.
Холодильные установки можно разделить на две группы. К первой группе относятся газовые или воздушные установки, в которых впервые было осуществлено промышленное получение холода. Ввиду малого холодильного эффекта и больших габаритов отдельных аппаратов такие установки не получили широкого распространения.
Ко второй группе относятся компрессорные паровые установки. Рабочим телом (холодильным агентом) в них являются пары различных веществ: аммиака NH3, углекислоты С02, сернистого ангидрида S02, фреонов (фторохлорпроизводные углеводородов), характерным представителем которых является фреон-12 (CF2C12), и др. Паровые холодильные установки, обладающие большой надежностью действия, получили в промышленности самое широкое распространение.
Кроме газовых и паровых существуют холодильные установки, основанные на других принципах: пароэжекторные и абсорбционные. В них для производства холода затрачивается не механическая работа, а теплота какого–либо рабочего тела с высокой температурой.
В пароэжекторной холодильной машине для сжатия холодильного агента используется кинетическая энергия струи рабочего пара произвольного вещества. Пароэжекторная холодильная установка отличается невысоким термодинамическим совершенством и в промышленности применяется редко. Более широкое распространение получили абсорбционные холодильные установки. В них для получения холодильного эффекта используется (как и в пароэжекторных) энергия в виде теплоты.
Холодильная установка в отличие от теплового двигателя работает по обратному, или холодильному, циклу, наиболее совершенным типом которого является обратимый обратный цикл Карно (рис. 1.25.1).
Рис. 1.25.1
В процессе 1-4 к холодильному агенту подводится удельное количество теплоты , отнимаемое от охлаждаемых тел; оно изображается пл. 51465. В процессе 2-3 от холодильного агента отводится удельное количество теплоты изображаемое пл. 23652. Это количество теплоты передается верхнему источнику теплоты при температуре, равной постоянной температуре в процессе 3-2. Пл. 12341 эквивалентна затрачиваемой механической работе.
Показателем совершенства обратного цикла является холодильный коэффициент
Чем больше отнимается удельного
количества теплоты
и чем меньше при этом затрачивается
механической работы или чем больше
,
тем совершенней холодильный цикл.
14. Основные виды переноса теплоты
Основные виды теплообмена
Тепло самопроизвольно распространяется от тел с большей температурой к телам с меньшей температурой. При наличии разности температур в одном теле или во многих телах (твердых, жидких и газообразных) возникает процесс теплообмена или теплопередачи, который протекает тем интенсивнее, чем больше разность температур. Теплообмен является сложным процессом. Однако ради простоты изучения различают три элементарных вида теплообмена: теплопроводность (кондукцию), конвекцию и тепловое излучение.
Теплопроводность определяется тепловым движением микрочастиц тела, т. е. движением микроструктурных частиц вещества (молекул, атомов, ионов, электронов). Обмен энергией между движущимися частицами происходит в результате непосредственных столкновений их; при этом молекулы более нагретой части тела, обладающие большей энергией, сообщают долю ее соседним частицам, энергия которых меньше. В газах перенос энергии происходит путем диффузии молекул и атомов, в жидкостях и твердых диэлектриках – путем упругих волн. В металлах перенос энергии осуществляется колеблющимися ионами решетки и диффузией свободных электронов («электронным газом»): значение упругих колебаний кристаллической решетки в этом случае не имеет большого значения.
Однако в теории, теплопроводности не рассматривается движение микроструктурных частиц, поскольку она базируется на анализе макропроцессов.
Основной закон теплопроводности – закон Фурье является феноменологическим описанием процесса и имеет вид:
,
Вт/м2
Где q – удельный тепловой поток;
X –коэффициент теплопроводности вещества, вт/(м∙град);
grad 1– градиент температуры, град/м.
Под конвекцией тепла понимают процесс передачи его из одной части пространства в другую перемещающимися макроскопическими объемами жидкости или таза. В зависимости от причины, вызывающей движение, конвекция может быть свободной (естественной) или вынужденной, происходящей за счет действия внешних сил. Естественное или свободное движение жидкости или газа, а следовательно, и конвекция тепла вызываются разностью удельных весов неравномерно нагретой среды; принудительное движение осуществляется нагнетателями (насосами, вентиляторами, компрессорами и др.).
Из определения конвекции следует, что количество передаваемого конвекцией в единицу времени тепла прямо связано со скоростью движения среды. Тепло передается главным образом в результате происходящих потоков жидкости или газа (макрообъемов), но отчасти тепло распространяется и в результате обмена энергией между частицами, т. е. теплопроводностью. Таким образом, конвекция всегда сопровождается теплопроводностью (кондукцией), и, следовательно, теплопроводность является неотъемлемой частью конвекции. Совместный процесс конвекции тепла и теплопроводности называют конвективным теплообменом. Конвективный теплообмен между потоком теплоносителя и поверхностью называют конвективной теплоотдачей или теплоотдачей соприкосновением и описывают формулой Ньютона – Рихмана
,
Вт/м2
где
– удельный поток тепла;
– коэффициент конвективной
теплоотдачи,
вт/(м2∙град);
–
средняя разность температур между
греющей средой и нагреваемой
поверхностью (температурный напор),
град.
Величину, обратную коэффициенту
теплоотдачи
,
называют термическим
сопротивлением.
Коэффициент конвективной теплоотдачи
зависит от многих факторов и на практике
значение его составляет от 2 (от свободно
движущегося воздуха к плоскости) до
5000
вт/(м∙град) и более
(от вынужденно движущейся воды в трубах
к их поверхности). Оно зависит от скорости
потока и характера движения, от формы
и размера обтекаемого тела, от свойств
и состояния среды.
Тепловое излучение представляет собой процесс превращения тепла в лучистую энергию и передачи ее в окружающее пространство.
При нагревании тел часть тепла в
результате атомных возмущений неизбежно
преобразуется в лучистую энергию.
Носителями лучисто" энергии являются
электромагнитные волны или в другом
представлении фотоны (кванты энергии).
Скорость перемещения этих носителей в
вакууме составляет около
м/сек.
Результирующий тепловой поток от
излучающей среды с абсолютной температурой
0К
к поверхности, средняя абсолютная
температура которой равна
определяется по формуле, построенной
на законе Стёфана-Больцмана:
, Вт/м2
где
– коэффициент излучения,
вт/(м °К4);
– приведенная степень черноты, зависящая
от свойств излучающей среды и поверхности
и выраженная в долях от степени черноты
абсолютно черного тела, принимаемой за
единицу.