Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ПЕЧАТАТЬ!!!.docx
Скачиваний:
60
Добавлен:
22.09.2019
Размер:
14.75 Mб
Скачать

Теплоемкость газов. Энтропия.

Отношение элементарного количества теплоты , полученное телом при бесконечно малом изменении его состояния, к изменению температуры называется удельной теплоемкостью тела в данном процессе:

(1.13.1)

Величина в уравнении зависит не только от интервала температур, но и от вита процесса подвода теплоты, характеризуемого некоторым постоянным параметром , которым может быть объем тела , давление и др. общее количество теплоты, полученное в данном процессе, определяется выражением

(1.13.2)

На примере идеального газа. Имеем , или заменив на , получим

Разделив обе части последнего уравнения на , находим

(1.13.3)

Выражение при обратимом изменении состояния газа есть полный дифференциал некоторой функции переменных и ( зависит только от температуры, а - величина постоянная). Клаузиус назвал эту функцию энтропия и обозначил в джоулях на градус (Дж/К).

Таким образом, дифференциал энтропии для обратимого изменения состояния определяется как

(1.13.4)

Удельная энтропия является параметром состояния, и изменение ее в любом термодинамическом процессе полностью определяется крайними состояниями тела и не зависит от пути процесса.

Интегрируя определяем

(1.13.5)

6. Второй закон термодинамики.

Закон, позволяющий указать направление теплового потока и устанавливающий максимально возможный предел превращения теплоты в работу в тепловых машинах, представляет собой новый закон, полученный из опыта. Это и есть второй закон термодинамики, имеющий общее значение для всех тепловых процессов.

В 50-х годах прошлого столетия Клаузиусом была дана наиболее общая и современная формулировка второго закона термодинамики в виде следующего постулата: «Теплота не может переходить от холод­ного тела к более нагретому сама собой даровым процессом (без ком­пенсации)». Постулат Клаузиуса, как и все другие формулировки второго закона, выражает собой один из основных, но не абсолютных законов природы, так как он был сфор­мулирован применительно к объектам, имеющим конечные размеры в окружающих нас земных условиях.

В 1851 г. Томсоном была высказана другая формулировка второго закона термодинамики, из которой следует, что не вся теплота, полученная, от теплоотдатчика, может перейти в работу, а только некоторая ее часть. Часть теплоты должна перейти в теплоприемник.

7. Термодинамические процессы идеальных газов (изобарный, изотермический, изохорный)

К основным процессам, имеющим большое значение, как для теоретических исследований, так и для практических работ в технике, относятся: изохорный, протекающий при постоянном объеме; изобарный, протекающий при постоянном давлении; изотермический,, протекающий при постоянной температуре; адиабатный, протекающий при отсутствии теплообмена с внешней средой.

Кроме того, существует группа процессов, являющихся при опре­деленных условиях обобщающими для основных процессов. Эти про­цессы называются политропными и характеризуются постоянством теплоемкости в процесса.

Для всех процессов устанавливается общий метод исследований, который заключается в следующем;

выводится уравнение кривой процесса на - и -диаграммах;

устанавливается зависимость между основными параметрами ра­бочего тела в начале и конце процесса;

определяется изменение внутренней энергии по формуле, справед­ливой для всех процессов идеального газа:

,

или при постоянной теплоемкости:

;

вычисляется работа изменения объема газа по основной формуле:

;

определяется удельное количество теплоты, участвующее в процессе, по формуле:

;

определяется изменение удельной энтальпии в процессе по формуле, справедливой для всех процессов идеального газа:

или для постоянной теплоемкости:

;

определяется изменение удельной энтропии идеального газа по формулам: ,

.

Рассматриваемые процессы считаются обратимыми.

Изохорный процесс

Процесс, протекающий при постоянном объеме, называют изохорным ( , или ). Кривая процесса называется изохорой.

При постоянном объеме давление газа изменяется прямо пропорционально абсолютным температурам:

. (1.17.1)

Внешняя работа газа при равна нулю, так как . Следовательно,

.

Удельная располагаемая (полезная) внешняя работа , которая может быть передана внешнему объекту работы, равна:

.

Если процесс 1-2 осуществляется с увеличением давления, то удельное количество теплоты в нем подводится, при этом увеличиваются внутренняя энергия и температура газа. Если давление в процессе понижается, то удельное количество теплоты отводится, уменьшаются внутренняя энергия и температура газа.

Изменение удельной энтропии в обратимом изохорном процессе определяем из уравнения:

,

Изменение энтропии при постоянной теплоемкости равно

. (1.17.2)

Как видно из данного уравнения, изохора на – диаграмме пред­ставляет собой кривую 1-2 (рис. 1.17.1). Подкасательная к кривой 1–2 в любой ее точке дает значение истинной теплоемкости .

Рис. 1.17.1

Изобарный процесс

Процесс, протекающий при постоянном давлении, называют изобарным ( , или ). Кривая процесса называется изобарой.

Это соотношение называется законом Гей-Люссака. Для процесса 1-2

. (1.17.3)

В изобарном процессе объемы одного и того же количества газа изменяются прямо пропорционально абсолютным температурам.

При расширении газа его температура возрастает, при сжатии – уменьшается.

Удельная работа изменения объема при этом выражается следую­щим уравнением:

, (1.17.4)

или

. (1.17.5)

Для обратимого изобарного процесса при постоянной теплоемкости изменение удельной энтропии находится по уравнению:

,

Но при , поэтому

. (1.17.6)

В случае изохорного и изобарного процессов в одном интервале тем­ператур возрастание энтропии будет больше в изобарном процессе, так как всегда больше .

Изотермный процесс

Процесс, протекающий при постоянной температуре, называют изотермическим ( , или ). Кривая процесса называется изо­термой (рис. 18.2).

Рис. 1.17.2

и (1.17.7)

При постоянной температуре объем газа изменяется обратно пропорционально его давлению (закон Бойля – Мариотта).

На – диаграмме изотермный процесс представляет собой равнобокую гиперболу.

Зная уравнение изотермного процесса для идеального газа, можно подсчитать работу процесса.

. (1.17.8)

Удельная располагаемая внешняя работа определяется по фор­муле:

, (1.17.9)

т. е. в изотермном процессе идеального газа , или удельная работа изменения объема, располагаемая (полезная) работа и удельное количество теплоты, полученное телом, равны между собой.

откуда

и (1.17.10)

Удельное количество теплоты, участвующее в изотермическом процессе, равно произведению изменения удельной энтропии на абсолютную температуру :

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]