Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Троелсен Э. Язык программирования С# 2010 и п...docx
Скачиваний:
113
Добавлен:
21.09.2019
Размер:
6.92 Mб
Скачать

Проблемы создания объектных образов и строго типизованные коллекции

Строго типизованные коллекции можно найти в библиотеках базовых классов .NET и это очень полезные программные конструкции. Однако эти пользовательские контейнеры мало помотают в решении проблем создания объектных образов. Даже если вы создадите пользовательскую коллекцию с именем IntCollection, предназначенную для работы только с типами данных System.Int32, вам придется создать объект некоторого типа для хранения самих данных (System.Array, System.Collections.ArrayList и т.п.).

public class IntCollection: IEnumerable {

 private ArrayList arInts = new ArrayList();

 public IntCollection() {}

 // Восстановление значения для вызывающей стороны.

 public int GetInt(int pos) { return (int)arInts[pos]; }

 // Операция создания объектного образа!

 public void AddInt(int i) { arInts.Add(i); }

 public void ClearInts() { arInts.Clear(); }

 public int Count { get { return arInts.Count; } }

 IEnumerator IEnumerable.GetEnumerator() { return arInts.GetEnumerator(); }

}

Вне зависимости от того, какой тип вы выберете для хранения целых чисел (System.Array, System.Collections.ArrayList и т.п.), вы не сможете избавиться от проблемы .NET 1.1, связанной с созданием объектных образов. Нетрудно догадаться, что здесь снова на помощь приходят обобщения. В следующем фрагменте программного кода тип System.Collections.Generic.List‹› используется для создания контейнера целых чисел, не имеющего проблем создания объектных образов и восстановлений значений при вставке и получении типов характеризуемых значений.

static void Main (string [] args) {

 // Баз создания объектного образа!

 List‹int› myInts = new List‹int›();

 myInts.Add.(5);

 // Без восстановления значения!

 int i = myInts[0];

}

Просто в качестве подтверждения рассмотрите следующий CIL-код для этого метода Main() (обратите внимание да отсутствие в нем каких бы то ни было блоков box и unbox).

.method private hidebysig static void Main(string[] args) cil managed {

 .entrypoint

 // Code size 24 (0x18)

 .maxstack 2

 .locals init ([0] class [mscorlib] System.Collections.Generic.List`1‹int32› myInts, [1] int32 i)

 IL_0000: nop

 IL_0001: newobj instance void class [mscorlib] System.Collections.Generic.List`1‹int32›::.ctor()

 IL_0006: stloc.0

 IL_0007: ldloc.0

 IL_0008: ldc.i4.5

 IL_0009: callvirt instance void class [mscorlib]System.Collections.Generic.List`1‹int32›::Add(!0)

 IL_000e: nop

 IL_000f: ldloc.0

 IL_0010: ldc.i4.0

 IL_0011: callvirt instance !0 class [mscorlib]System.Collections.Generic.List`1‹int32›::get_Item(int32)

 IL_0016: stloc.1

 IL_0017: ret

} // end of method Program::Main

Теперь, когда вы имеете лучшее представление о роли обобщений в .NET2.0, мы с вами готовы углубиться в детали. Для начала мы формально рассмотрим пространство имен System.Collections.Generic.

Исходный код. Проект CustomNonGenericCollection размещен в подкаталоге, соответствующем главе 10.

Пространство имен System.Collections.Generic

Обобщенные типы присутствуют во многих библиотеках базовых классов .NET 2.0, но пространство имен System.Collections.Generic буквально наполнено ими (что вполне соответствует его названию). Подобно своему "родственнику" без обобщений (System.Collections), пространство имен System.Collections. Generic содержит множество типов класса и интерфейса, что позволяет вкладывать элементы в самые разные контейнеры. Совсем не удивительно, что обобщенные интерфейсы имитируют соответствующие необобщенные типы из пространства имен System.Collections.

• ICollection‹T›

• IComparer‹T›

• IDictionary‹K, V›

• IEnumerable‹T›

• IEnumerator‹T›

• IList‹T›

Замечание. По соглашению для обобщенных типов их замещаемые параметры обозначаются буквами верхнего регистра. И хотя здесь допустимо использовать любые буквы (или слова), обычно используют Т для обозначения типов, К – для ключей, а V – для значений.

В пространстве имен System.Collections.Generic определяется и ряд классов, реализующих многие из этих ключевых интерфейсов. В табл. 10.1 представлены описания базовых типов класса из этого пространства имен, реализуемые ими интерфейсы и соответствующие типы из пространства имен System.Collections.

В пространстве имен System.Collections.Generic также определяется целый ряд "вспомогательных" классов и структур для работы с конкретными контейнерами. Например, тип LinkedListNode‹T› представляет узел в обобщенном LinkedList‹T›, исключение KeyNotFoundException возникает при попытке доступа к элементу контейнера с несуществующим ключом и т.д.

Как видно из табл. 10.1, многие обобщенные классы коллекции имеют необобщенные аналоги в пространстве имен System.Collections (иногда даже с одинаковыми именами). В главе 7 было показано, как работать с такими необобщенными типами, поэтому дальше не предполагается рассматривать все их обобщенные "дубликаты". Мы рассмотрим только List‹T›, чтобы проиллюстрировать приемы использования обобщений. Если вам нужны подробности о других элементах пространства имен System.Collections.Generic, обратитесь к документации .NET Framework 2.0.

Таблица 10.1. Классы System.Collections.Generic

Обобщенный класс

Необобщенный аналог в System.Collections

Описание

Collection‹T›

CollectionBase

База для обобщенной коллекции

Comparer‹T›

Comparer

Выполняет сравнение двух обобщенных объектов

Dictionary‹K, V›

Hashtable

Обобщенная коллекция пар имен и значений

List‹T›

ArrayList

Список элементов с динамически изменяемыми размерами

Queue‹T›

Queue

Обобщенная реализация списка FIFO (дисциплина обслуживания типа "очередь")

SortedDictionary‹K, V›

SortedList

Обобщенная реализаций сортированного набора пар имен и значений

Stack<T>

Stack

Обобщенная реализация списка LIFO (дисциплина обслуживания типа "стек")

LinkedList‹T›

-

Обобщенная реализация двусвязного списка

ReadOnlyCoIlection‹T›

ReadOnlyCollectionBase

Обобщенная реализация набора элементов только для чтения

Тип List‹T›

Подобно необобщенным классам, обобщенные классы являются объектами, размещаемыми в динамической памяти, поэтому для них следует использовать new со всеми необходимыми аргументами конструктора. Кроме того, вы должны указать типы, замещающие параметры, определенные обобщенным типом. Так, для System.Collections.Generic.List‹T› требуется указать одно значение, задающее вид элемента, с которым будет функционировать List‹T›. Например, чтобы создать три объекта List‹› для хранения целых чисел, объектов SportsCar и объектов Person, вы должны записать следующее

static void Main(string[] args) {

 // Создается List для хранения целых чисел.

 List‹int› myInts = new List‹int›();

 // Создается List для хранения объектов SportsCar.

 List‹SportsCar› myCars = new ListSportsCar›();

 // Создается List для хранения объектов Person.

 List‹Person› myPeople = new List‹Person›();

}

В этот момент вы можете поинтересоваться, что же на самом деле становится значением заполнителя. Открыв окно определения программного кода в Visual Studio 2005 (см. главу 2), вы увидите, что везде в определении типа List‹T› используется заполнитель Т. Ниже показана часть соответствующего листинга (обратите внимание на элементы, выделенные полужирным шрифтом).

// Часть листинга для типа List‹T›.

namespace System.Collections.Generic {

 public class List‹T›: IList‹T›, ICollection‹T›, IEnumerable‹T›, IList, ICollection, IEnumerable {

  …

  public void Add(T item);

  public IList‹T› AsReadOnly();

  public int BinarySearch(T item);

  public bool Contains(T item);

  public void CopyTo(T[] array);

  public int FindIndex(System.Predicate‹T› match);

  public T FindLast(System.Predicate‹T› match);

  public bool Remove(T item);

  public int RemoveAll(System.Predicate‹T› match);

  public T[] ToArray();

  public bool TrueForAll(System.Predicate‹T› match);

  public T this[int index] { get; set; }

  …

 }

}

Когда вы создаете тип List‹T› и указываете для него SportsCar, это эквивалентно следующему определению типа List‹T›.

namespace System.Collections.Generic {

 public class List‹SportsCar›: IList‹SportsCar›, ICollection‹SportsCar›, IEnumerable‹SportsCar›, IList, ICollection, IEnumerable {

  …

  public void Add(SportsCar item);

  public IList‹SportsCar› AsReadOnly();

  public int BinarySearch(SportsCar item);

  public bool Contains(SportsCar item);

  public void CopyTo(SportsCar[] array);

  public int FindIndex(System.Predicate‹SportsCar› match);

  public SportsCar FindLast(System.Predicate‹SportsCar› match);

  public bool Remove(SportsCar item);

  public int RemoveAll(System.Predicate‹SportsCar› match);

  publiс SportsCar[] ToArray();

  public bool TrueForAll(System.Predicate‹SportsCar› match);

  public SportsCar this[int index] { get; set; }

  …

 }

}

Конечно, когда вы создаете обобщенный List‹T›, нельзя сказать, что компилятор буквально создает совершенно новую реализацию типа List‹T›. Он обращается только к тем членам обобщенного типа, которые вы вызываете фактически. Чтобы пояснить это, предположим, что вы используете List‹T› для объектов SportsCar так.

static void Main(string[] args) {

 // Проверка List, содержащего объекты SportsCars.

 List‹SportsCar› myCars = new List‹SportsCar›();

 myCars.Add(new SportsCar());

 Console.WriteLine("Your List contains {0}", myCars.Count);

}

Если с помощью ildasm.exe проверить генерируемый CIL-код, обнаружатся следующие подстановки.

.method private hidebysig static void Main(string[] args) cil managed {

 .entrypoint

 .maxstack 2

 .locals init ([0] class [mscorlib] System.Collections.Generic.'List`1'‹class SportsCar› myCars)

 newobj instance void class [mscorlib]System.Collections.Generic.'List`1'‹class SportsCar›::.ctor()

 stloc.0

 ldloc.0

 newobj instance void CollectionGenerics.SportsCar::.ctor()

 callvirt instance void class [mscorlib]System.Collections.Generic.'List`1'‹class SportsCar›::Add(!0)

 nop

 ldstr "Your List contains {0} item(s)."

 ldloc.0

 callvirt instance int32 class [mscorlib] System.Collections.Generic.'List`1' ‹class SportsCar›::get_Count()

 box [mscorlib] System.Int32

 call void [mscorlib]System.Console::WriteLine(string, object)

 nop

 ret

}

Теперь, после изучения процесса использования обобщенных типов из библиотек базовых классов, в оставшейся части главы мы рассмотрим вопросы создания обобщенных методов, типов и коллекций.