Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
постоянный ток.docx
Скачиваний:
14
Добавлен:
21.09.2019
Размер:
71.07 Кб
Скачать

Постоянный электрический ток

Электрическим током называют упорядоченное (направленное) движение заряженных частиц. Электрический ток возникает при упорядоченном перемещении свободных электронов или ионов.

Полный заряд, переносимый через любое сечение проводника равен нулю, так как заряды разных знаков перемещаются с одинаковой средней скоростью.

Электрический ток имеет определенное направление. За направление тока принимают направление движения положительно заряженных частиц. Направление вектора плотности тока совпадает с направлением движения положительно заряженных частиц. Плотность тока - векторная физическая величина, равная отношению силы тока к площади поперечного сечения проводника.

где j -плотность тока, S - площадь сечения проводника.

Если ток образован движением отрицательно заряженных частиц, то направление тока считают противоположным направлению движения частиц.

Движение частиц в проводнике мы непосредственно не видим. О наличии электрического тока говорят следующие действиям или явлениям, которые его сопровождают:

1. проводник, по которому течет ток, нагревается,

2. электрический ток может изменять химический состав проводника,

3. ток оказывает силовое воздействие на соседние токи и намагниченные тела.

Для существования электрического тока в проводнике необходимо создать в нем электрическое поле.

Количественной мерой электрического тока служит сила тока I – скалярная физическая величина, равная отношению заряда Δq, переносимого через поперечное сечение проводника за интервал времени Δt, к этому интервалу времени:

.

Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным.

В Международной системе единиц СИ сила тока измеряется в амперах (А).

Условия возникновения и существования постоянного электрического тока:

1. наличие свободных заряженных частиц;

2. на заряженные частицы должны действовать силы, обеспечивающие их упорядоченное перемещение в течение конечного промежутка времени.

На рис. упорядоченное движение электронов в металлическом проводнике и ток I . S – площадь поперечного сечения проводника, – вектор Е электрическое поле.

Для того чтобы в проводнике мог существовать постоянный ток проводимости, необходимо выполнение следующих условий:

а) напряженность электрического поля в проводнике должна быть отлична от нуля и не должна изменяться с течением времени;

б) цепь постоянного тока проводимости должна быть замкнутой;

в) на свободные электрические заряды, помимо кулоновских сил, должны действовать неэлектростатические силы, называемые сторонними силами. Сторонние силы могут быть созданы источниками тока (гальваническими элементами, аккумуляторами, электрическими генераторами и др.).

Под действием сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему в замкнутой цепи может поддерживаться постоянный электрический ток.

При перемещении электрических зарядов по цепи постоянного тока сторонние силы, действующие внутри источников тока, совершают работу.

Физическая величина, равная отношению работы Aст сторонних сил при перемещении заряда q от отрицательного полюса источника тока к положительному к величине этого заряда, называется электродвижущей силой источника (ЭДС):

.

Электродвижущая сила, как и разность потенциалов, измеряется в вольтах (В).

При перемещении единичного положительного заряда по замкнутой цепи постоянного тока работа сторонних сил равна сумме ЭДС, действующих в этой цепи, а работа электростатического поля равна нулю.

Цепь постоянного тока можно разбить на отдельные участки. Те участки, на которых не действуют сторонние силы (т. е. участки, не содержащие источников тока), называются однородными. Участки, включающие источники тока, называются неоднородными.

При перемещении единичного положительного заряда по некоторому участку цепи работу совершают как электростатические (кулоновские), так и сторонние силы. Работа электростатических сил равна разности потенциалов Δφ12 = φ1 – φ2 между начальной (1) и конечной (2) точками неоднородного участка. Работа сторонних сил равна по определению электродвижущей силе , действующей на данном участке. Поэтому полная работа равна:

.

Величину U12 принято называть напряжением на участке цепи 1–2. В случае однородного участка напряжение равно разности потенциалов:

.

Закон Ома для однородного участка цепи.

Сила тока в однородном участке цепи прямо пропорциональна напряжению при постоянном сопротивлении участка и обратно пропорциональна сопротивлению участка при постоянном напряжении:

.

где U - напряжение на участке, R - сопротивление участка.

Сопротивление проводника R — величина, характеризующая противодействие проводника установлению в нем электрического тока. Сопротивление измеряется в омах (Ом). Если при напряжении в 1 В в проводнике устанавливается ток в 1 А, то сопротивление такого проводника равно 1 Ом. Сопротивление проводника прямо пропорционально его длине l и обратно пропорционально площади его поперечного сечения S:

,

где коэффициент пропорциональности ρ называется удельным сопротивлением. Удельное сопротивление зависит от рода вещества и от температуры (с повышением температуры удельное сопротивление большинства металлов увеличивается), численно оно равно сопротивлению проводника единичной длины с единичной площадью поперечного сечения.

Единица удельного сопротивления — ом-метр (1 Ом • м).

Удельное сопротивление металлического проводника линейно возрастает с температурой:

,

где ρ0— удельное сопротивление при T0 = 293 К, ΔТ= Т- T0, α — температурный коэффициент сопротивления. Единица температурного коэффициента сопротивления К-1. Удельное сопротивление полупроводника уменьшается при увеличении температуры из-за увеличения числа свободных зарядов, способных переносить электрический ток.

Закон Ома для произвольного участка цепи, содержащего источник постоянного тока:

,

где φ1 - φ2 + ε = U напряжение на заданном участке цепи, R - электрическое сопротивление заданного участка цепи.

Закон Ома для полной цепи.

Сила тока в полной цепи равна отношению электродвижущей силы источника к сумме сопротивлений внешнего и внутреннего участка цепи.

где R - электрическое сопротивление внешнего участка цепи, r - электрическое сопротивление внутреннего участка цепи.

Из закона Ома для полной цепи следует, что сила тока в цепи с заданным источником тока зависит только от сопротивления внешней цепи R. Если к полюсам источника тока подсоединить проводник с сопротивлением R<< r, то тогда только ЭДС источника тока и его сопротивление будут определять значение силы тока в цепи. Такое значение силы тока будет являться предельным для данного источника тока и называется током короткого замыкания:

Закона Ома в дифференциальной форме.

Найдем связь между и в бесконечно малом объеме проводника – закон Ома в дифференциальной форме. В изотропном проводнике (в данном случае с постоянным сопротивлением) носители зарядов движутся в направлении действия силы, т.е. вектор плотности тока и вектор напряженности поля коллинеарны:

Исходя из закона Ома, имеем:

,

А мы знаем, что или . Отсюда можно записать:

,

это запись закона Ома в дифференциальной форме.

Здесь 1/p- удельная электропроводность. Размерность σ – [ ].