
- •Матрицы. Определители. Основные понятия.
- •Обратная матрица. Ранг матрицы.
- •Алгоритм нахождения ранга матрицы.
- •Системы линейных уравнений. Системы линейных неравенств.
- •Векторы. N – мерное линейное векторное пространство.
- •Скалярное, векторное, смешанное произведение векторов.
- •Квадратичные формы.
- •7.Кривые второго порядка на плоскости (окружность, эллипс).
- •Пусть и - фокусы эллипса. Начало системы координат расположим на середине отрезка . Ось направим вдоль этого отрезка, ось - перпендикулярно к этому отрезку (рис. 7.2).
- •8. Кривые второго порядка на плоскости (гипербола, парабола).
- •Комплексные числа. Алгебраическая форма записи.
- •10. Геометрическое изображение комплексных чисел. Тригонометрическая форма записи.
- •Многочлены и действия над ними.
- •Функции. Графики основных элементарных функций.
- •Способы задания функции.
- •Графики элементарных функций.
- •Линейная функция.
- •Квадратичная функция
- •Гипербола
- •Степенная функция с натуральным показателнм.
- •Функция .
- •Показательная функция
- •Логарифмическая функция
- •Предел функции.
- •Непрерывность в точке. Виды разрывов.
- •Производная, ее геометрический и физический смысл.
- •Дифференциал, его геометрический и механический смысл.
- •Теоремы о дифференцируемых функциях и их применение.
- •Выпуклость графика функции. Точки перегиба.
- •Первообразная функции. Неопределенный интеграл.
- •Понятие определенного интеграла. Геометрический смысл.
- •Комбинаторика. Понятие множества. Перестановки. Размещения. Сочетания.
- •Формула включений-исключений и ее применения к комбинаторике и теории чисел. Бином Ньютона.
- •Рекуррентные уравнения.
- •Производящие функции.
- •Булевые функции и их представление. Двоичная запись целых чисел.
- •Алгоритм перевода чисел из десятичной системы счисления в двоичную.
- •Перевод чисел из двоичной системы в десятичную.
- •Теория графов. Основные понятия теории графов.
- •Сущность и условия применимости теории вероятностей. Вероятностное пространство.
- •Действия со случайными событиями.
- •Вероятность события. Аксиоматическое определение вероятности.
- •Вероятность события. Классическое определение вероятности.
- •Случайные величины и способы их описания.
- •Модели законов распределения вероятностей, наиболее употребляемые в социально-экономических приложениях.
- •Цепи Маркова и их использование в моделировании социально-экономических процессов.
- •Задача линейного программирования в общем виде.
- •Виды злп и способы перехода от одного вида к другому.
- •Основные теоремы линейного программирования.
- •Симплекс-метод.
- •Метод искусственного базиса.
- •Алгоритм метода искусственного базиса.
- •Двойственность задач линейного программирования. Таблица соответствий.
- •Теоремы двойственности.
- •Критерии оптимальности.
- •Транспортная задача. Закрытая и открытая модели.
- •Теорема о существовании оптимального решения.
- •Целочисленные злп, графический метод решения в случае двух переменных.
- •Задачи о назначениях и о коммивояжере как частные случаи целочисленных злп.
- •Метод ветвей и границ.
- •Алгоритм метода ветвей и границ:
- •Стандартная задача нелинейного программирования.
- •Локальный экстремум. Необходимое и достаточное условия.
- •Глобальный и условный экстремумы
- •Множители Лагранжа.
- •Задача о потребительском выборе.
- •Выпуклые множества, выпуклые и вогнутые функции. Теорема Куна-Таккера.
- •Динамическое программирование. Общая постановка задачи.
- •Функции Беллмана. Уравнения Беллмана. Условно-оптимальные управления.
- •Условная оптимизация.
- •Безусловная оптимизация.
- •Принцип Беллмана для оптимальных путей.
- •I этап. Условная оптимизация.
- •II этап. Безусловная оптимизация.
- •Оптимальное распределение инвестиций как задача динамического программирования.
- •Теория игр. Игровые модели.
- •Платежная матрица. Нижняя и верхняя цена игры. Принцип минимакса.
- •Чистые стратегии. Седловая точка.
- •Решение игр в смешанных стратегиях.
- •Приведение матричной игры к задаче линейного программирования.
- •Биматричные игры. Равновесие Нэша. Оптимальность Парето.
- •60. Игра двух лиц, в которой одним из игроков является "природа"
Чистые стратегии. Седловая точка.
Целью теории антагонистических игр, как и теории любого класса игр, является выработка для таких игр достаточно естественных представлений об оптимальности ситуаций и стратегий игроков и установление зависимости между свойствами игр, с одной стороны, и свойствами оптимальных в сформулированном смысле ситуаций – с другой. Наиболее слабой формой такой зависимости можно считать признаки существования оптимальных ситуаций, т.е. реализуемости соответствующих понятий оптимальности, а наиболее сильной – пути (алгоритмы) их нахождения и перечисления.
Если верхняя и нижняя цены игры совпадают, то общее значение верхней и нижней цены игры а = β = υ называется чистой ценой игры, или ценой игры. Минимаксные стратегии, соответствующие цене игры, являются оптимальными стратегиями, а их совокупность — оптимальным решением, или решением игры. В этом случае игрок А получает максимальный гарантированный (не зависящий от поведения игрока В) выигрыш υ, а игрок В добивается минимального гарантированного (вне зависимости от поведения игрока А) проигрыша υ. Говорят, что решение игры обладает устойчивостью, т.е. если один из игроков придерживается своей оптимальной стратегии, то для другого не может быть выгодным отклониться от своей оптимальной стратегии.
Пара чистых стратегий Ai и Bj дает оптимальное решение игры тогда и только тогда, когда соответствующий ей элемент aij является одновременно наибольшим в своем столбце и наименьшим в своей строке. Такая ситуация, если она существует, называется седловой точкой (по аналогии с поверхностью седла, которая искривляется вверх в одном направлении и вниз – в другом).
Решение игр в смешанных стратегиях.
Если игра не имеет седловой точки, т.е. (β ≠ a), то применение чистых стратегий не дает оптимального решения игры. В таком случае можно получить оптимальное решение, случайным образом чередуя чистые стратегии.
Смешанной
стратегией SA
игрока
А называется
применение чистых стратегий А1,
А2,
…, Аm
с
вероятностью р1,
р2,
…,рi,
…,рm
причем сумма вероятностей равна единице:
=1.
Смешанные стратегии игрока А записываются в виде матрицы:
А1
А2
… Ai
… Am
SA = p1 p2 … pi … pm
или в виде строки SA = (p1, p2, …, pi, …, pm).
Аналогично смешанные стратегии игрока В обозначают:
В1
В2
… Вj
… Вn
SВ = q1 q2 … qj … qn
или
в виде строки SВ
= (q1,
q2,
…, qi,
…, qn),
где сумма вероятностей появления
стратегий равна единице:
= 1.
Чистые стратегии можно считать частным случаем смешанных и задавать строкой, в которой 1 соответствует чистой стратегии. На основании принципа минимакса определяется оптимальное решение (или решение) игры: это пара оптимальных стратегий S*A , S*B в общем случае смешанных, обладающих следующим свойством: если один из игроков придерживается своей оптимальной стратегии, то другому не может быть выгодно отступать от своей. Выигрыш, соответствующий оптимальному решению, называется ценой игры υ. Цена игры удовлетворяет неравенству:
а ≤ υ ≤ β
где а и β – нижняя и верхняя цены игры.
Пример: определить нижнюю и верхнюю цены игры, заданной
0,5
0,6 0,8
платежной матрицей Р
=
0,9 0,7 0,8 . Имеет ли игра седловую точку?
.
0,7 0,6 0,6
Решение: все расчеты удобно проводить в таблице, к которой кроме матрицы Р введены столбец ai, и строка βj.
Aj |
B1 |
B2 |
B3 |
ai |
A1 |
0,5 |
0,6 |
0,8 |
0,5 |
A2 |
0,9 |
0,7 |
0,8 |
0,7 |
A3 |
0,7 |
0,6 |
0,6 |
0,6 |
βj |
0,9 |
0,7 |
0,8 |
а = β = 0,7 |
Анализируя строки матрицы (стратегии игрока А),заполняем столбец ai: a1 = 0,5, a2 = 0,7, a3 = 0,6 - минимальные числа в строках 1, 2, 3.
Аналогично βj = 0,9, βj = 0,7, βj = 0,8 – максимальные числа в столбцах 1, 2, 3 соответственно.
Нижняя
цена игры a
=
=
max{0,5;0,7;0,6}
= 0,7, i
=1, 2, 3
(наибольшее число
в столбце) и верхняя цена игры
β
=
= min{0,9;0,7;0,8}
= 0,7, j
= 1,2,3 (наименьшее число в строке). Эти
значения равны, т.е. a
=
β,
и достигаются на одной и той же паре
стратегий (A2;
B2)
и цена игры υ
= 0,7