
- •Матрицы. Определители. Основные понятия.
- •Обратная матрица. Ранг матрицы.
- •Алгоритм нахождения ранга матрицы.
- •Системы линейных уравнений. Системы линейных неравенств.
- •Векторы. N – мерное линейное векторное пространство.
- •Скалярное, векторное, смешанное произведение векторов.
- •Квадратичные формы.
- •7.Кривые второго порядка на плоскости (окружность, эллипс).
- •Пусть и - фокусы эллипса. Начало системы координат расположим на середине отрезка . Ось направим вдоль этого отрезка, ось - перпендикулярно к этому отрезку (рис. 7.2).
- •8. Кривые второго порядка на плоскости (гипербола, парабола).
- •Комплексные числа. Алгебраическая форма записи.
- •10. Геометрическое изображение комплексных чисел. Тригонометрическая форма записи.
- •Многочлены и действия над ними.
- •Функции. Графики основных элементарных функций.
- •Способы задания функции.
- •Графики элементарных функций.
- •Линейная функция.
- •Квадратичная функция
- •Гипербола
- •Степенная функция с натуральным показателнм.
- •Функция .
- •Показательная функция
- •Логарифмическая функция
- •Предел функции.
- •Непрерывность в точке. Виды разрывов.
- •Производная, ее геометрический и физический смысл.
- •Дифференциал, его геометрический и механический смысл.
- •Теоремы о дифференцируемых функциях и их применение.
- •Выпуклость графика функции. Точки перегиба.
- •Первообразная функции. Неопределенный интеграл.
- •Понятие определенного интеграла. Геометрический смысл.
- •Комбинаторика. Понятие множества. Перестановки. Размещения. Сочетания.
- •Формула включений-исключений и ее применения к комбинаторике и теории чисел. Бином Ньютона.
- •Рекуррентные уравнения.
- •Производящие функции.
- •Булевые функции и их представление. Двоичная запись целых чисел.
- •Алгоритм перевода чисел из десятичной системы счисления в двоичную.
- •Перевод чисел из двоичной системы в десятичную.
- •Теория графов. Основные понятия теории графов.
- •Сущность и условия применимости теории вероятностей. Вероятностное пространство.
- •Действия со случайными событиями.
- •Вероятность события. Аксиоматическое определение вероятности.
- •Вероятность события. Классическое определение вероятности.
- •Случайные величины и способы их описания.
- •Модели законов распределения вероятностей, наиболее употребляемые в социально-экономических приложениях.
- •Цепи Маркова и их использование в моделировании социально-экономических процессов.
- •Задача линейного программирования в общем виде.
- •Виды злп и способы перехода от одного вида к другому.
- •Основные теоремы линейного программирования.
- •Симплекс-метод.
- •Метод искусственного базиса.
- •Алгоритм метода искусственного базиса.
- •Двойственность задач линейного программирования. Таблица соответствий.
- •Теоремы двойственности.
- •Критерии оптимальности.
- •Транспортная задача. Закрытая и открытая модели.
- •Теорема о существовании оптимального решения.
- •Целочисленные злп, графический метод решения в случае двух переменных.
- •Задачи о назначениях и о коммивояжере как частные случаи целочисленных злп.
- •Метод ветвей и границ.
- •Алгоритм метода ветвей и границ:
- •Стандартная задача нелинейного программирования.
- •Локальный экстремум. Необходимое и достаточное условия.
- •Глобальный и условный экстремумы
- •Множители Лагранжа.
- •Задача о потребительском выборе.
- •Выпуклые множества, выпуклые и вогнутые функции. Теорема Куна-Таккера.
- •Динамическое программирование. Общая постановка задачи.
- •Функции Беллмана. Уравнения Беллмана. Условно-оптимальные управления.
- •Условная оптимизация.
- •Безусловная оптимизация.
- •Принцип Беллмана для оптимальных путей.
- •I этап. Условная оптимизация.
- •II этап. Безусловная оптимизация.
- •Оптимальное распределение инвестиций как задача динамического программирования.
- •Теория игр. Игровые модели.
- •Платежная матрица. Нижняя и верхняя цена игры. Принцип минимакса.
- •Чистые стратегии. Седловая точка.
- •Решение игр в смешанных стратегиях.
- •Приведение матричной игры к задаче линейного программирования.
- •Биматричные игры. Равновесие Нэша. Оптимальность Парето.
- •60. Игра двух лиц, в которой одним из игроков является "природа"
Скалярное, векторное, смешанное произведение векторов.
Определение. Скалярным произведением векторов и называется число, равное произведению длин этих сторон на косинус угла между ними.
= cos
Обозначение:
(причем
).
Пример
Если
рассматривать векторы
в
декартовой прямоугольной системе
координат, то
= xa
xb
+ ya
yb
+ za
zb;
Пример
Определение.
Векторным
произведением векторов
и
называется вектор
,
удовлетворяющий следующим условиям:
1)
,
где
- угол между векторами
и
,
2) вектор ортогонален векторам и
3) , и образуют правую тройку векторов.
Обозначается:
или
.
Пример
Если
заданы векторы
(xa,
ya,
za)
и
(xb,
yb,
zb)
в декартовой прямоугольной системе
координат с единичными векторами
,
то
=
Пример
Геометрическим смыслом векторного произведения векторов является площадь параллелограмма, построенного на векторах и .
Пример
Определение. Смешанным произведением векторов , и называется число, равное скалярному произведению вектора на вектор, равный векторному произведению векторов и .
Обозначается
или
(
,
,
).
Пример
Смешанное произведение по модулю равно объему параллелепипеда, построенного на векторах , и .
Объем
треугольной пирамиды, образованной
векторами
,
и
,
равен
Пример
Если
,
,
то
.
Пример
Квадратичные формы.
Определение. Однородный многочлен второй степени относительно переменных х1 и х2
Ф(х1,
х2)
= а11
,
не содержащий свободного члена и неизвестных в первой степени, называется квадратичной формой переменных х1 и х2.
Определение. Однородный многочлен второй степени относительно переменных х1, х2 и х3
не содержащий свободного члена и неизвестных в первой степени называется квадратичной формой переменных х1, х2 и х3.
Рассмотрим
квадратичную форму двух переменных.
Квадратичная форма имеет симметрическую
матрицу А =
.
Определитель этой матрицы называется
определителем
квадратичной формы.
Пусть на плоскости
задан ортогональный базис
.
Каждая точка плоскости имеет в этом
базисе координаты х1,
х2.
Если задана квадратичная форма Ф(х1, х2) = а11 , то ее можно рассматривать как функцию от переменных х1 и х2.
7.Кривые второго порядка на плоскости (окружность, эллипс).
Определение. Кривой второго порядка называется множество точек, координаты которых удовлетворяют уравнению второго порядка
где
-
вещественные числа, и хотя бы одно из
чисел
отлично от нуля.
Определение. Окружностью называется геометрическое место точек плоскости, равноудаленных от фиксированной точки, называемой центром окружности.
Получим уравнение окружности, если известны ее центр и радиус.
Окружность
радиуса
с
центром в точке
имеет
уравнение:
(7.1.)
Определение. Эллипсом называется геометрическое место точек плоскости, для каждой из которых сумма расстояний до двух данных точек той же плоскости, назывемых фокусами эллипса, есть величина постоянная.