
- •Матрицы. Определители. Основные понятия.
- •Обратная матрица. Ранг матрицы.
- •Алгоритм нахождения ранга матрицы.
- •Системы линейных уравнений. Системы линейных неравенств.
- •Векторы. N – мерное линейное векторное пространство.
- •Скалярное, векторное, смешанное произведение векторов.
- •Квадратичные формы.
- •7.Кривые второго порядка на плоскости (окружность, эллипс).
- •Пусть и - фокусы эллипса. Начало системы координат расположим на середине отрезка . Ось направим вдоль этого отрезка, ось - перпендикулярно к этому отрезку (рис. 7.2).
- •8. Кривые второго порядка на плоскости (гипербола, парабола).
- •Комплексные числа. Алгебраическая форма записи.
- •10. Геометрическое изображение комплексных чисел. Тригонометрическая форма записи.
- •Многочлены и действия над ними.
- •Функции. Графики основных элементарных функций.
- •Способы задания функции.
- •Графики элементарных функций.
- •Линейная функция.
- •Квадратичная функция
- •Гипербола
- •Степенная функция с натуральным показателнм.
- •Функция .
- •Показательная функция
- •Логарифмическая функция
- •Предел функции.
- •Непрерывность в точке. Виды разрывов.
- •Производная, ее геометрический и физический смысл.
- •Дифференциал, его геометрический и механический смысл.
- •Теоремы о дифференцируемых функциях и их применение.
- •Выпуклость графика функции. Точки перегиба.
- •Первообразная функции. Неопределенный интеграл.
- •Понятие определенного интеграла. Геометрический смысл.
- •Комбинаторика. Понятие множества. Перестановки. Размещения. Сочетания.
- •Формула включений-исключений и ее применения к комбинаторике и теории чисел. Бином Ньютона.
- •Рекуррентные уравнения.
- •Производящие функции.
- •Булевые функции и их представление. Двоичная запись целых чисел.
- •Алгоритм перевода чисел из десятичной системы счисления в двоичную.
- •Перевод чисел из двоичной системы в десятичную.
- •Теория графов. Основные понятия теории графов.
- •Сущность и условия применимости теории вероятностей. Вероятностное пространство.
- •Действия со случайными событиями.
- •Вероятность события. Аксиоматическое определение вероятности.
- •Вероятность события. Классическое определение вероятности.
- •Случайные величины и способы их описания.
- •Модели законов распределения вероятностей, наиболее употребляемые в социально-экономических приложениях.
- •Цепи Маркова и их использование в моделировании социально-экономических процессов.
- •Задача линейного программирования в общем виде.
- •Виды злп и способы перехода от одного вида к другому.
- •Основные теоремы линейного программирования.
- •Симплекс-метод.
- •Метод искусственного базиса.
- •Алгоритм метода искусственного базиса.
- •Двойственность задач линейного программирования. Таблица соответствий.
- •Теоремы двойственности.
- •Критерии оптимальности.
- •Транспортная задача. Закрытая и открытая модели.
- •Теорема о существовании оптимального решения.
- •Целочисленные злп, графический метод решения в случае двух переменных.
- •Задачи о назначениях и о коммивояжере как частные случаи целочисленных злп.
- •Метод ветвей и границ.
- •Алгоритм метода ветвей и границ:
- •Стандартная задача нелинейного программирования.
- •Локальный экстремум. Необходимое и достаточное условия.
- •Глобальный и условный экстремумы
- •Множители Лагранжа.
- •Задача о потребительском выборе.
- •Выпуклые множества, выпуклые и вогнутые функции. Теорема Куна-Таккера.
- •Динамическое программирование. Общая постановка задачи.
- •Функции Беллмана. Уравнения Беллмана. Условно-оптимальные управления.
- •Условная оптимизация.
- •Безусловная оптимизация.
- •Принцип Беллмана для оптимальных путей.
- •I этап. Условная оптимизация.
- •II этап. Безусловная оптимизация.
- •Оптимальное распределение инвестиций как задача динамического программирования.
- •Теория игр. Игровые модели.
- •Платежная матрица. Нижняя и верхняя цена игры. Принцип минимакса.
- •Чистые стратегии. Седловая точка.
- •Решение игр в смешанных стратегиях.
- •Приведение матричной игры к задаче линейного программирования.
- •Биматричные игры. Равновесие Нэша. Оптимальность Парето.
- •60. Игра двух лиц, в которой одним из игроков является "природа"
Алгоритм метода ветвей и границ:
Находим решение задачи линейного программирования без учета целочисленности.
Составляет дополнительные ограничения на дробную компоненту плана.
Находим решение двух задач с ограничениями на компоненту.
Строим в случае необходимости дополнительные ограничения, согласно возможным четырем случаям получаем оптимальный целочисленный план либо устанавливаем неразрешимость задачи.
Стандартная задача нелинейного программирования.
Определение: задачами нелинейного программирования называются задачи математического программирования, в которых нелинейны и (или) целевая функция, и (или) ограничения в виде неравенств или равенств.
Задачи нелинейного программирования можно классифицировать в соответствии с видом функции F(x), функциями ограничений и размерностью вектора (вектора решений).
В самом общем виде классификация представлена в таблице.
Таблица 44.1
Вид F(x) |
Вид функции ограничений |
Число переменных |
Название задачи |
Нелинейная |
Отсутствуют |
1 |
Безусловная однопараметрическая оптимизация |
Нелинейная |
Отсутствуют |
Более 1 |
Безусловная многопараметрическая оптимизация |
Нелинейная или линейная |
Нелинейные или линейные |
Более 1 |
Условная нелинейная оптимизация |
Общих способов решения, аналогичных симплекс-методу линейного программирования, для нелинейного программирования не существует. В каждом конкретном случае способ выбирается в зависимости от вида функции F(x).
Задачи нелинейного программирования на практике возникают довольно часто, когда, например, затраты растут непропорционально количеству закупленных или произведённых товаров.
Многие задачи нелинейного программирования могут быть приближены к задачам линейного программирования и найдено близкое к оптимальному решению. Встречаются задачи квадратичного программирования, когда функция есть F(x) полином 2-ой степени относительно переменных, а ограничения линейны. В ряде случаев может быть применён метод штрафных функций, сводящей задачу поиска экстремума при наличии ограничений к аналогичной задаче при отсутствии ограничений, которая обычно решается проще.
Но в целом задачи нелинейного программирования относятся к трудным вычислительным задачам. При их решении часто приходится прибегать к приближенным методам оптимизации. Мощным средством для решения задач нелинейного программирования являются численные методы. Они позволяют найти решение задачи с заданной степенью точности.
Общая формулировка нелинейных задач:
Найти переменные
,
удовлетворяющие системе уравнений:
(44.1)
и обращающие в максимум (минимум) целевую функцию:
(44.2)
При этом в отличие от задач линейного программирования, не оговаривается форма ни целевой функции, ни неравенств. Возможны разные случаи: целевая функция нелинейна, а ограничения линейны; целевая функция линейна, а ограничения (хотя бы одно из них) — нелинейны; и целевая функция, и ограничения нелинейны.