
- •Матрицы. Определители. Основные понятия.
- •Обратная матрица. Ранг матрицы.
- •Алгоритм нахождения ранга матрицы.
- •Системы линейных уравнений. Системы линейных неравенств.
- •Векторы. N – мерное линейное векторное пространство.
- •Скалярное, векторное, смешанное произведение векторов.
- •Квадратичные формы.
- •7.Кривые второго порядка на плоскости (окружность, эллипс).
- •Пусть и - фокусы эллипса. Начало системы координат расположим на середине отрезка . Ось направим вдоль этого отрезка, ось - перпендикулярно к этому отрезку (рис. 7.2).
- •8. Кривые второго порядка на плоскости (гипербола, парабола).
- •Комплексные числа. Алгебраическая форма записи.
- •10. Геометрическое изображение комплексных чисел. Тригонометрическая форма записи.
- •Многочлены и действия над ними.
- •Функции. Графики основных элементарных функций.
- •Способы задания функции.
- •Графики элементарных функций.
- •Линейная функция.
- •Квадратичная функция
- •Гипербола
- •Степенная функция с натуральным показателнм.
- •Функция .
- •Показательная функция
- •Логарифмическая функция
- •Предел функции.
- •Непрерывность в точке. Виды разрывов.
- •Производная, ее геометрический и физический смысл.
- •Дифференциал, его геометрический и механический смысл.
- •Теоремы о дифференцируемых функциях и их применение.
- •Выпуклость графика функции. Точки перегиба.
- •Первообразная функции. Неопределенный интеграл.
- •Понятие определенного интеграла. Геометрический смысл.
- •Комбинаторика. Понятие множества. Перестановки. Размещения. Сочетания.
- •Формула включений-исключений и ее применения к комбинаторике и теории чисел. Бином Ньютона.
- •Рекуррентные уравнения.
- •Производящие функции.
- •Булевые функции и их представление. Двоичная запись целых чисел.
- •Алгоритм перевода чисел из десятичной системы счисления в двоичную.
- •Перевод чисел из двоичной системы в десятичную.
- •Теория графов. Основные понятия теории графов.
- •Сущность и условия применимости теории вероятностей. Вероятностное пространство.
- •Действия со случайными событиями.
- •Вероятность события. Аксиоматическое определение вероятности.
- •Вероятность события. Классическое определение вероятности.
- •Случайные величины и способы их описания.
- •Модели законов распределения вероятностей, наиболее употребляемые в социально-экономических приложениях.
- •Цепи Маркова и их использование в моделировании социально-экономических процессов.
- •Задача линейного программирования в общем виде.
- •Виды злп и способы перехода от одного вида к другому.
- •Основные теоремы линейного программирования.
- •Симплекс-метод.
- •Метод искусственного базиса.
- •Алгоритм метода искусственного базиса.
- •Двойственность задач линейного программирования. Таблица соответствий.
- •Теоремы двойственности.
- •Критерии оптимальности.
- •Транспортная задача. Закрытая и открытая модели.
- •Теорема о существовании оптимального решения.
- •Целочисленные злп, графический метод решения в случае двух переменных.
- •Задачи о назначениях и о коммивояжере как частные случаи целочисленных злп.
- •Метод ветвей и границ.
- •Алгоритм метода ветвей и границ:
- •Стандартная задача нелинейного программирования.
- •Локальный экстремум. Необходимое и достаточное условия.
- •Глобальный и условный экстремумы
- •Множители Лагранжа.
- •Задача о потребительском выборе.
- •Выпуклые множества, выпуклые и вогнутые функции. Теорема Куна-Таккера.
- •Динамическое программирование. Общая постановка задачи.
- •Функции Беллмана. Уравнения Беллмана. Условно-оптимальные управления.
- •Условная оптимизация.
- •Безусловная оптимизация.
- •Принцип Беллмана для оптимальных путей.
- •I этап. Условная оптимизация.
- •II этап. Безусловная оптимизация.
- •Оптимальное распределение инвестиций как задача динамического программирования.
- •Теория игр. Игровые модели.
- •Платежная матрица. Нижняя и верхняя цена игры. Принцип минимакса.
- •Чистые стратегии. Седловая точка.
- •Решение игр в смешанных стратегиях.
- •Приведение матричной игры к задаче линейного программирования.
- •Биматричные игры. Равновесие Нэша. Оптимальность Парето.
- •60. Игра двух лиц, в которой одним из игроков является "природа"
Виды злп и способы перехода от одного вида к другому.
Одна и та же ЗЛП может быть сформулирована в различных эквивалентных формах. Наиболее важными формами задачи линейного программирования являются каноническая и стандартная.
В канонической форме задача является задачей на максимум (минимум) некоторой линейной функции F, ее система ограничений состоит только из равенств (уравнений). При этом переменные задачи х1, х2, ..., хn являются неотрицательными:
К канонической форме можно преобразовать любую задачу линейного программирования.
Правило приведения ЗЛП к каноническому виду:
1. Если в исходной задаче некоторое ограничение (например, первое) было неравенством, то оно преобразуется в равенство, введением в левую часть некоторой неотрицательной переменной, при чем в неравенства «≤» вводится дополнительная неотрицательная переменная со знаком «+»; в случаи неравенства «≥» - со знаком «-»
(32.1)
Вводим переменную
Тогда неравенство (32.1) запишется в виде:
В каждое из неравенств вводится своя “уравнивающая” переменная, после чего система ограничений становится системой уравнений.
Число вводимых дополнительных неотрицательных переменных при преобразовании ограничений-неравенств в ограничения-равенства равно числу преобразуемых неравенств.
Вводимые дополнительные переменные имеют вполне определенный экономический смысл. Так, если в ограничениях исходной задачи линейного программирования отражаются расход и наличие производственных ресурсов, то числовое значение дополнительной переменной в плане задачи, записанной в основной форме, равно объему неиспользуемого соответствующего ресурса.
2. Если в исходной задаче некоторая переменная не подчинена условию неотрицательности, то ее заменяют (в целевой функции и во всех ограничениях) разностью неотрицательных переменных
3. Если в ограничениях правая часть отрицательна, то следует умножить это ограничение на (-1)
4. Наконец, если исходная задача была задачей на минимум, то введением новой целевой функции F1 = -F мы преобразуем нашу задачу на минимум функции F в задачу на максимум функции F1.
Таким образом, всякую задачу линейного программирования можно сформулировать в канонической форме.
В стандартной форме задача линейного программирования является задачей на максимум (минимум) линейной целевой функции. Система ограничений ее состоит из одних линейных неравенств типа « <= » (« >= »). Все переменные задачи неотрицательны.
Всякую задачу линейного программирования можно сформулировать в стандартной форме. Приведение к стандартной форме необходимо, так как большинство методов решения задач линейного программирования разработано именно для стандартной формы.
Для приведения к стандартной форме задачи линейного программирования может потребоваться выполнить следующие действия: 1. перейти от минимизации целевой функции к ее максимизации; 2. изменить знаки правых частей ограничений; 3. перейти от ограничений-равенств к неравенствам; 4. избавиться от переменных, не имеющих ограничений на знак.