Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Все ответы с 1-60.doc
Скачиваний:
74
Добавлен:
21.09.2019
Размер:
6.15 Mб
Скачать

Алгоритм нахождения ранга матрицы.

Пусть требуется вычислить ранг матрицы А размеров m×n . Если матрица нулевая, то по определению . В противном случае с помощью перестановки строк и столбцов матрицы добиваемся того, чтобы в левом верхнем углу матрицы стоял ненулевой элемент. Итак, считаем, что a11≠0.

Первую строку оставляем без изменений. Ко второй строке прибавляем первую, умноженную на число . В результате вторая строка принимает вид

Затем к третьей строке прибавляем первую строку, умноженную на число . В результате третья строка принимает вид

Процесс продолжаем до тех пор, пока не получим нуль на первом месте в последней строке.

Преобразованная матрица имеет вид

Если все строки, начиная со второй, в полученной матрице нулевые, то ее ранг равен 1, так как есть минор первого порядка, отличный от нуля a11. В противном случае перестановкой строк и столбцов матрицы с номерами, большими единицы, добиваемся, чтобы второй элемент второй строки был отличен от нуля. Итак, считаем, что .

Первую и вторую строки оставляем без изменений. К третьей строке прибавляем вторую, умноженную на число . В результате получим, что второй элемент третьей строки равен нулю. Затем к четвертой строке прибавляем вторую, умноженную на число , и т.д. В результате получаем матрицу

Если все строки, начиная с третьей, нулевые, то , так как минор . В противном случае перестановкой строк и столбцов с номерами, большими двух, добиваемся, чтобы третий элемент третьей строки был отличен от нуля. Далее, добавлением третьей строки, умноженной на соответствующие числа, к строкам с большими номерами получаем нули в третьем столбце, начиная с четвертого элемента, и т.д.

На каком-то этапе мы придем к матрице, у которой все строки, начиная с (r+1)-ой, равны нулю (или отсутствуют при r =m≤ n), а минор в первых строках и первых столбцах является определителем треугольной матрицы с ненулевыми элементами на диагонали. Ранг такой матрицы равен . Следовательно, .

Пример

  1. Системы линейных уравнений. Системы линейных неравенств.

Определение. Системой m линейных уравнений с n неизвестными называется система вида

(3.1)

где aij и bi (i=1,…,m; b=1,…,n) – некоторые известные числа, а x1,…,xn -неизвестные. В обозначении коэффициентов aij первый индекс ( i) обозначает номер уравнения, а второй (j) – номер неизвестного, при котором стоит этот коэффициент.

Коэффициенты при неизвестных записываются в виде матрицы A= , которую называют матрицей системы. Числа, стоящие в правых частях уравнений, b1,…,bm называются свободными членами.

Определение. Совокупность n чисел c1,…,cn называется решением данной системы, если каждое уравнение системы обращается в равенство после подстановки в него чисел c1,…,cn вместо соответствующих неизвестных x1,…,xn.

Определение. Система линейных уравнений, имеющая хотя бы одно решение, называется совместной. В противном случае, т.е. если система не имеет решений, то она называется несовместной.

Матрица A = , образованная путем приписывания справа к матрице A столбца свободных членов, называется расширенной матрицей системы.

Вопрос о совместности системы (3.1) решается следующей теоремой.

Теорема Кронекера-Капелли. Система линейных уравнений совместна тогда и только тогда, когда ранги матриц A иA совпадают, т.е. r(A) = r(A) = r.

Для множества М решений системы (3.1) имеются три возможности:

1) M =  (в этом случае система несовместна);

2) M состоит из одного элемента, т.е. система имеет единственное решение (в этом случае система называется определенной);

3) M состоит более чем из одного элемента (тогда система называется неопределенной). В третьем случае система (3.1) имеет бесчисленное множество решений.

Система имеет единственное решение только в том случае, когда r(A) = n. При этом число уравнений - не меньше числа неизвестных (mn); если m>n, то m-n уравнений являются следствиями остальных. Если 0<r<n, то система является неопределенной.

Для решения произвольной системы линейных уравнений нужно уметь решать системы, в которых число уравнений равно числу неизвестных, - так называемые системы крамеровского типа:

a11 x1 + a12 x2 +... + a1n xn = b1,

a21 x1 + a22 x2 +... + a2n xn = b2, (3.2)

... ... ... ... ... ...

an1 x1 + an1 x2 +... + ann xn = bn.

Системы (3.2) решаются одним из следующих способов:

1) методом Гаусса, или методом исключения неизвестных (пример);

2) по формулам Крамера (пример);

3) матричным методом (пример).

Определение. Однородной системой m линейных неравенств с n неизвестными называется система вида:

Решение любой системы линейных неравенств сводится к ряду решению систем линейных уравнений.