
- •1.1. Закон эквивалентов.
- •1.2. Вычисление эквив-ов простых и сложных в-в.
- •1.3. Моль
- •1.4. Закон Авогадро
- •1.5. Мольный объём газа.
- •1.6 Эквивалент окислителя и восстановителя.
- •2.1. Электронное облако.
- •2.2 Электронная орбиталь.
- •2.6. Порядок заполнения энергетических уровней и подуровней в многоэлектронных атомах.
- •2.5Максимальное число электронов на атомных энергетических уровнях и подуровнях
- •3.2 Периодичность свойств химических
- •3.3 Сродство атома к электрону
- •4.6. Ковалентная полярная и неполярная связь.
- •4.9. Метод молекулярных орбиталей. (м. М. О.).
- •4.10. Связывающая и разрых. Орбитали.
- •3.11. Ионная связь.
- •4.12. Поляризация и поляризуемость ионов.
- •5.3. Экзо- и эндотермич. Р-ции.
- •5.5. Энтальпия.
- •5.8. Энергия Гиббса.
- •6.1. Скорость хим. Р-ций в гомогенных и гетерогенных системах.
- •7.2. Растворитель, растворимые вещества.
- •7.5. Концентрация р-ов.
- •7.6. Теория электролитической диссоциации.
- •7.8. Сильные и слабые электролиты.
- •7.12. Ионное произведение воды.
- •7.15. Условие образования и растворения осадка.
- •7.17. Гидролиз солей – это взаимодействие соли с водой. Ему подвергаются соли, в состав γ входит анион или катион слабого электролита.
- •7.18. Константа и степень гидролиза.
- •8.4. Составление ур-ний р-ций.
- •8.6. Зависимость ок-но восст-ых св-в от р-ции среды.
- •9.4. Электролиз
- •10.2 Комплексообразователь, лиганды.
- •10.3. Внутренняя и внешняя сферы кс.
- •10.4. Номенклатура кс.
- •10.5. Равновесие в растворах кс.
- •11.2. Металлическая связь.
- •12.Металлы и их соединения.
4.6. Ковалентная полярная и неполярная связь.
При взаимодействии атомов с одинаковой электроотриц.обр-ся молекулы с ковалентной неполярной связью. Такая связь существует в молекулах следующих простых веществ: H2, F2, Cl2, O2, N2. Хим. связи в этих газах образованы посредством общ. электронных пар, т.е. при перекрывании соответствующих электронных облаков, обусловленном электронно-ядерным взаимодействием, γ осущ-ет при сближении атомов. Составляя электронные формулы в-в, следует помнить, что каждая общая электронная пара – это условное изображение повышенной электронной плотности, возникающей в результате перекрывания соответствующих электронных облаков.
При взаимодействии атомов, значение электроотрецательностей γ отличаются, но не резко, происходит смещение общей электронной пары к более электроотрицательному атому. Это наиболее распространенный тип химической связи, которой встречается как в неорганических, так и органических соединениях.
К ковалентным связям в полной мере относятся и те связи, которые образованы по донорно-акцепторному механизму, например в ионах гидроксония и амония.
4.7.
Гибридизация атомных орбиталей.
2 гр.
(линейное
строение)
3
гр.
(форма
плоского треу-ика) 4 гр.
5
гр.
(нет
гибридизации)
4.9. Метод молекулярных орбиталей. (м. М. О.).
В основе этого метода лежит положение о том, что электр. пара в молекуле обладает набором молекулярных квант. чисел, как и электронов в атоме. Метод МО представляет собой естественное распространение модели атома, как системы из ядра и электронных оболочек, на случай молекулы. В атоме электроны двигаются в центральном поле единственного положительно заряженного ядра. В молекуле же электроны двигаются в многоцентровом поле положительно заряженных ядер и описываются своими функциями, которые подобно атомным функциям — АО, называются молекулярными орбиталями – МО.
4.10. Связывающая и разрых. Орбитали.
При образовании связывающих орбиталей выделяется столько энергии, сколько поглащается на образовании. разрыхляющей. орбитали.
3.11. Ионная связь.
Ионная связь образуется при взаимодействии атомов, которые резко отличаются друг от друга по электроотрицательности. Например, типичные металлы литий(Li), натрий(Na), калий(K), кальций (Ca), стронций(Sr), барий(Ba) образуют ионную связь с типичными неметаллами, в основном с галогенами. Кроме галогенидов щелочных металлов, ионная связь также образуется в таких соединениях, как щелочи и соли. Например, в гидроксиде натрия(NaOH) и сульфате натрия(Na2SO4) ионные связи существуют только между атомами натрия и кислорода (остальные связи – ковалентные полярные). Ионная связь.Предельным случаем полярной ковалентной связи является ионная связь. Ионная связь в «чистом» виде не существует, так как в любой химической связи всегда имеется та или иная доля ковалентного характера.
4.12. Поляризация и поляризуемость ионов.
Неполное разделение зарядов в ионных соединениях м. объяснить поляризацией ионов, т.е. влиянием их друг на друга,γ приводит к деформации электронных оболочек ионов. Причиной поляризации всегда служит действие электрического поля. Каждый ион, будучи носителем электрического заряда, я-я источником электрического поля. Поэтому, взаимодействуя, противоположено заряженные ионы поляризуют друг друга. Поляризуемость различ. ионов неодинакова: чем слабее связаны внешние электроны с ядром, тем легче поляризуетсяион, тем сильнее он деформируется в электрическом поле. У ионов одинакового заряда, обладающих аналогичным строением внешнего электронного слоя, поляризуемость возрастает с увеличением размеров иона, т.к. внешние электроны удаляются всё дальше от ядра.
4.13 Межмолекулярное взаимодействие. Ориентационная составляющая связана с полярностью молекул. Молекула, обладающая дипольным моментом, притягивает другую полярную молекулу за счет электростатических сил диполь-дипольного взаимодействия (например, в жидком сероводороде). Молекулы при этом стремятся расположиться либо последовательно, либо антипараллельно: Такой ориентации препятствует тепловое движение молекул, усиливающееся с повышением температуры. Поэтому ориентационное взаимодействие тем больше, чем больше дипольные моменты, меньше расстояние между молекулами и ниже температура. Индукционная составляющая возникает при взаимодействии полярной и неполярной молекул, например, НС1 и Сl2 При этом полярная молекула поляризует неполярную, в которой появляется (индуцируется) наведенный дипольный момент. В результате возникает диполь-дипольное притяжение молекул. Энергия индукционного взаимодействия тем больше, чем больше дипольный момент полярной молекулы и чем больше поляризуемость неполярной. Поляризуемость молекул - - это мера смещения зарядов в молекуле в электрическом поле заданной напряженности. Поляризуемость резко увеличивается с увеличением размеров электронной оболочки. Например, в ряду молекул НС1, НВг и HI дипольный момент уменьшается, однако температуры плавления и кипения веществ увеличиваются, что связано с увеличением поляризуемости молекул.
Если две молекулы имеют постоянные дипольные моменты и обладают поляризуемостями то средняя потенциальная энергия их взаимодействия может быть оценена по формуле, полученной П. Дебаем. Ориентационные и индукционные силы между двумя молекулами зависят от присутствия других полярных молекул и, следовательно, не аддитивны. Дисперсионная составляющая притяжения молекул универсальна и п рисут-ствует всегда. Наиболее отчетливо дисперсионное притяжение проявляется при взаимодействии неполярных молекул и взаимодействии атомов благородных газов. Эти силы сравнимы по величине с силами полярных межмолекулярных взаимодействий. Суть возникновения дисперсионных сил заключается в следующем. При движении электронов в молекуле мгновенно возникает асимметрия распределения положительных и отрицательных зарядов. В результате такого движения электронов каждую молекулу можно рассматривать как место возникновения мгновенно существующих диполей различной направленности» Время существования такого осциллирующего диполя около 10-8 с. Попеременно возникающие диполи разных молекул в результате движения электронов ориентируются так, что возникает либо притяжение, либо отталкивание молекул.
4.14 Водородная связь Водородной связью называется способностью атома водорода, соединенного с атомом сильно электроотрицательпого элемента, к образованию еще одной химической связи с другим подобным атомом. Условием образования водородной связи является высокая электроотрицательность атома, непосредственно связанного в молекуле с атомом водорода.
4.15 Металлическая связь характеризуется слабым взаимодействием общих электронов с ядрами соединяемых атомов и полной делокализацией этих электронов между всеми атомами в кристалле, что обеспечивает устойчивость данной связи.
Металлы имеют особую кристаллическую решетку, в узлах которой находятся как атомы, так и катионы металлов, а между ними свободно перемещаются обобществленные электроны («электронный газ»). Движение общих электронов в металлах осуществляется по множеству молекулярных орбиталей, возникших за счет слияния большого числа свободных атомных орбиталей соединяемых атомов и охватывающих множество атомных ядер. Поэтому в случае металлической связи невозможно говорить о направленности этой связи.
5.1. Термохимией наз-ся раздел химии, занимающийся изучением тепловых эффектов хим. р-ций. Тепловые эффекты хим. процессов вызывается тем, что протекание р-ции сопровожд. разрывом одних хим. связей и обр-нием др. Разность энергий образующихся связей и тех, γ претерпели разрыв проявл-я в виде результирующего теплового эффекта хим. р-ций.
5.2. Термохимич. ур-ния.
(Н.У)