
- •1 Строение вещества. Закон Кулона. Диэлектрическая проницаемость. Электрическое поле.
- •1.1 Строение вещества
- •1.2 Закон Кулона
- •3 Магнитное поле. Магнетизм
- •3.4 Электромагнитная индукция. Правило Ленца
- •3.6 Взаимная индукция
- •3.7 Магнитное поле в веществе
- •4 Магнитные цепи
- •4.3 Расчет разветвленной однородной магнитной цепи
- •5.2 Получение синусоидальной эдс
- •5.3 Изображение синусоидальных эдс, напряжений и токов на плоскости декартовых координат
- •5.4 Векторное изображение синусоидально изменяющихся величин. Векторные диаграммы.
- •Действующая и средняя величины переменного тока
- •6 Элементы и параметры электрических цепей переменного тока
- •6.2 Цепь с индуктивностью
- •6.3 Цепь с емкостью
- •6.4 Последовательное соединение r, l, с
- •6.5 Параллельное соединение r, l, с
- •7 Трехфазные электрические цепи
- •7.1 Основные понятия и определения
- •7.2 Соединение фаз генератора и приемника звездой
- •7.3 Классификация приемников в трехфазной цепи
- •7.4 Четырехпроводная цепь
- •7.5 Симметричная нагрузка приемника
- •7.6 Несимметричная нагрузка приемника
- •7.7 Трехпроводная электрическая цепь
- •7.8 Соединение фаз генератора и приемника треугольником
- •7.9 Симметричная нагрузка
- •7.10 Несимметричная нагрузка приемника
- •Общие замечания к расчету трехфазных цепей
- •8 Мощность трехфазной цепи, ее расчет и измерение
- •8.1 Соединение потребителей звездой
- •8.2 Соединение потребителей треугольником
- •8.3 Измерение активной мощности в трехфазных цепях
- •8.4 Измерение активной мощности двумя ваттметрами
- •9 Асинхронные машины
- •9.1. История создания и область применения асинхронных двигателей
- •9.2. Устройство трёхфазной асинхронной машины
- •9.3. Получение вращающегося магнитного поля
- •9.4. Режимы работы трёхфазной асинхронной машины
- •Режим двигателя
- •9.5 Режим генератора
- •9.6 Режим электромагнитного тормоза
7.2 Соединение фаз генератора и приемника звездой
При соединении фаз обмотки генератора (или трансформатора) звездой их концы X, Y и Z соединяют в одну общую точку N, называемую нейтральной точкой (или нейтралью) (рис. 3.6). Концы фаз приемников (Za, Zb, Zc) также соединяют в одну точку n. Такое соединение называется соединение звезда.
Рис. 3.6
Провода A-a, B-b и C-c, соединяющие начала фаз генератора и приемника, называются линейными, провод N-n, соединяющий точку N генератора с точкой n приемника, – нейтральным.
Трехфазная цепь с нейтральным проводом будет четырехпроводной, без нейтрального провода – трехпроводной.
В трехфазных цепях различают фазные и линейные напряжения. Фазное напряжение UФ – напряжение между началом и концом фазы или между линейным проводом и нейтралью (UA, UB, UC у источника; Ua, Ub, Uc у приемника).
Если сопротивлением проводов можно пренебречь, то фазное напряжение у приемника считают таким же, как и у источника. (UA = Ua, UB = Ub, UC = Uc). За условно положительные направления фазных напряжений принимают направления от начала к концу фаз.
Линейное напряжение (UЛ) – напряжение между линейными проводами или между одноименными выводами разных фаз (UAB, UBC, UCA). Условно положительные направления линейных напряжений приняты от точек, соответствующих первому индексу, к точкам соответствующим второму индексу (рис. 3.6).
По аналогии с фазными и линейными напряжениями различают также фазные и линейные токи:
Фазные (IФ) – это токи в фазах генератора и приемников.
Линейные (IЛ) – токи в линейных проводах.
При соединении в звезду фазные и линейные токи равны
(3.5)
IФ = IЛ.
Ток, протекающий в нейтральном проводе, обозначают IN.
По первому закону Кирхгофа для нейтральной точки n(N) имеем в векторной форме
(3.6)
İN = İA + İB + İC.
Рис. 3.7
В соответствии с выбранными условными положительными направлениями фазных и линейных напряжений можно записать уравнения по второму закону Кирхгофа.
(3.7)
ÚAB = ÚA - ÚB; ÚBC = ÚB - ÚC; ÚCA = ÚC - ÚA.
Согласно этим выражениям на рис. 3.7а построена векторная диаграмма, из которой видно, что при симметричной системе фазных напряжений система линейных напряжений тоже симметрична: UAB,UBC,UCA равны по величине и сдвинуты по фазе относительно друг друга на 120° (общее обозначение UЛ), и опережают, соответственно, векторы фазных напряжений UA, UB, UC, (UФ) на угол 30°.
Действующие значения линейных напряжений можно определить графически по векторной диаграмме или по формуле (3.8), которая следует из треугольника, образованного векторами двух фазных и одного линейного напряжений:
UЛ = 2 UФ cos 30°
или
UЛ
=
UФ.
(3.8)
Предусмотренные ГОСТом линейные и фазные напряжения для цепей низкого напряжения связаны между собой соотношениями:
UЛ = 660 В; UФ = 380 В; UЛ = 380 В; UФ = 220 В; UЛ = 220 В; UФ = 127 В.
Векторную диаграмму удобно выполнить топографической (рис. 3.7б), тогда каждой точке цепи соответствует определенная точка на диаграмме. Вектор, проведенный между двумя точками топографической диаграммы, выражает по величине и фазе напряжения между одноименными точками цепи.