Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Андрейчиков А.В. - Анализ, синтез, планирование...doc
Скачиваний:
74
Добавлен:
21.09.2019
Размер:
32.05 Mб
Скачать

Характеристика акторов

Результаты, получаемые при прямом и обратном процессах планирования, во многом определяются свойствами акторов. Рассмотрим основные особенности акторов, участвующих в планировании.

По общности преследуемых целей, реализуемых политик и прогнозируемых сценариев акторы можно кластеризовать по трем группам, которые определяют соответствующие виды иерархий. Первую группу определяют акторы, имеющие одинаковые цели, политики и сценарии (рис. 3.4а), но с различной относительной степенью предпочтительности. Во вторую и третью группу входят акторы с полностью (рис. 3.4 б) или частично (рис. 3.4в) различающимися элементами (целями и т.п.), принадлежащими нижним уровням иерархии. Акторы могут обладать одинаковой или различной силой (весомостью) влияния на конечный результат.

Степень влияния акторов на исход определяется, как правило, их политическим, экономическим, военным, правовым, социальным положением в обществе. По способности или предрасположенности к поиску компромиссного решения акторы, участвующие в конкретном процессе планирования, можно охарактеризовать тремя признаками. Первый признак выделяет группу антагонистически настроенных акторов, не идущих ни на какие компромиссы. Второй признак прямо противоположен первому и определяет группу акторов, стремящихся вырабатывать компромиссные решения. Третий признак объединяет акторов, обладающих свойствами, характерными как для первой, так и для второй указанных групп.

Характером и числом акторов, участвующих в планировании, определяются способы выработки желаемых сценариев. В следующем разделе рассмотрены различные способы определения желаемых сценариев.

3.3. Способы определения желаемых сценариев

Предлагается несколько способов определения желаемых сценариев. Разновидности указанных способов во многом обусловливаются составом и характером акторов, участвующих в процессе планирования. С учетом сказанного в практике планирования выделяются две ситуации, отличающиеся числом акторов, занятых в принятии решений и определяющих принципиальные отличия процедур формирования желательных сценариев. Первая ситуация характеризуется тем, что в процессе выработки и определения предпочтительности желаемых сценариев участвует один актор. В соответствии со второй ситуацией желаемый сценарий определяется с учетом мнений двух или более акторов, находящихся в сложных, возможно противоречивых, отношениях.

Определение желаемых сценариев одним экспертом

При определении желаемых сценариев для ситуаций, в которых процесс планирования осуществляется одним актором, следует придерживаться следующих стратегий.

В соответствии с первой стратегией проводится построение новой иерархической системы, отличающейся полностью или частично от иерархии предыдущего прямого процесса. Альтернативы в новой иерархии остаются прежними, т. е. они не изменяются по сравнению с предыдущей итерацией процесса. Во вновь формируемую иерархию включают элементы, характеризующие желаемые цели, критерии, политики, и устанавливают их относительную степень предпочтения. Изменению подвергаются также матрицы попарных сравнений альтернатив, при заполнении которых эксперту следует ответить на вопросы: Какая альтернатива из двух сравниваемых более желательна по рассматриваемому критерию? Насколько одна из альтернатив предпочтительнее другой по девятибалльной шкале (см. табл. 2.1)? Результатом реализации первой стратегии является нормализованный вектор приоритетов желаемых сценариев, рассчитанный относительно фокуса иерархии.

Вторая стратегия предполагает определение желаемых сценариев по результатам оценки выгод и издержек, которые ожидаются от реализации каждого сценария (исхода). Для решения этой задачи строятся две иерархии, по которым оцениваются относительные выгоды и издержки сценариев. В иерархиях используются все альтернативы-сценарии из предыдущей итерации прямого процесса планирования. При построении и заполнении матриц попарных сравнений альтернатив следует дать ответы на следующие вопросы: Какая из двух сравниваемых альтернатив предпочтительнее и насколько предпочтительнее относительно получения от ее реализации функциональных, экономических, социальных и других выгод (для первой иерархии) и издержек (для второй иерархии)? Результатом проведения второй стратегии первоначально является ненормированный вектор приоритетов альтернатив, рассчитанный по критерию, характеризующему отношение значений ненормированных векторов приоритетов, отражающих выгоды и издержки. Затем ненормированный вектор приводится к нормированному (табл. 3.3) и далее используется в очередном процессе планирования.

Таблица 3.3

Нормирование вектора приоритетов

Альтернатива-исход (А,)

A1

А2

A3

Вектор приоритетов выгод

0,5

0,3

0,2

Вектор приоритетов издержек

0,2

0,3

0,5

Ненормированный вектор приоритетов отношений выгод и издержек

2,5

1,0

0,4

Нормированный вектор приоритетов отношений выгод и издержек

0,64

0,25

0,11

Третья стратегия предполагает использование иерархии предыдущего прямого процесса и относящихся к этой иерархии матриц попарных сравнений альтернатив-сценариев со значениями экспертных оценок. Изменению в данном случае подлежат весовые коэффициенты элементов иерархических уровней, кроме уровня альтернатив. При этом весовые коэффициенты будут отражать не наиболее или наименее вероятную их значимость в будущем, как в прямом процессе, а наиболее или наименее желаемую значимость. Уровень акторов из иерархии исключается. Результатом реализации третьей стратегии является нормированный вектор приоритетов альтернатив-исходов относительно фокуса видоизмененной иерархии.

Четвертая стратегия основана на определении приоритета желаемых сценариев по результатам оценки предполагаемых последствий от реализации каждого рассматриваемого сценария. Оценка последствий осуществляется на матрице специального вида. Наименованиями строк матрицы являются критерии (Ki), характеризующие будущие важные характеристики исследуемой системы, а наименованиями столбцов — сценарии i), взятые из предыдущего прямого процесса. На пересечении строк и столбцов экспертом в матрице зафиксированы оценки (aij), значения которых определены шкалой разностей (см. табл. 3.2). Для каждого сценария по матрице рассчитывается интегральная оценка ОАj

где р, — весовой коэффициент критерия К, (i = \,т).

На основании полученной информации об интегральных оценках ОАj по каждому сценарию эксперт определяет степень важности желаемых сценариев методом попарных сравнений. При заполнении матриц попарных сравнений предпочтение отдается тем альтернативам, которые имеют большее абсолютное значение интегральной оценки OAj . Пример перехода от интегральных оценок сценариев к их вектору приоритетов приведен ниже (табл. 3.4).

Таблица 3.4