Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
влияние магнитного поля.doc
Скачиваний:
9
Добавлен:
20.09.2019
Размер:
335.36 Кб
Скачать

6. Процессы в области экстракции и первичного формирования потоков заряженных частиц в системах с плазменными эмиттерами

Процессы, имеющие место при формировании потоков заряженных частиц в плазменных эмиссионных системах, определяются следующими особенностями:

- на границе плазма – слой практически отсутствует потенциальный барьер, поэтому плотность эмиссионного тока извлекаемых из плазмы заряженных частиц есть плотность тока насыщения;

- согласование эмиссионной способности плазменного эмиттера и первеанса ускоряющего промежутка обеспечивается соответствующим перемещением границы плазмы по отношению к экстрактору;

- в области первичного формирования пучка заряженных частиц всегда имеется достаточно большая концентрация нейтралов, которые оказывают существенное влияние на процессы в ускоряющем промежутке (искажают распределение потенциала в промежутке, влияют на его электрическую прочность и т.п.);

- в случае применения одноапертурной системы формирования ионного пучка, максимальный ток в пучке будет зависеть от напряжения экстракции и массы извлекаемых ионов.

Остановимся на рассмотрении некоторых из указанных особенностей.

Формирование энергетического спектра ионов и быстрых атомов

Для получения интегральных оценок скоростей процессов при ионной бомбардировке поверхности нужно знать энергетические спектры потоков ионов и быстрых атомов.

Наиболее простой является ситуация в бесстолкновительном вакуумном слое. В этом случае разброс ионов по скоростям будет определяться величиной разности потенциалов, локализуемой в плазме положительного столба разряда в ГРК, которая обычно не превышает 20–30 В. Если напряжение на пограничном слое превышает 100 В, указанным разбросом по энергиям в потоке ионов можно пренебречь. Ввиду отсутствия резонансной перезарядки в слое быстрые атомы в нем генерироваться не будут.

Картина явлений, при движении ионов из плазмы к мишени, существенно усложняется в реальных режимах ионно-плазменной обработки, когда dсл составляет несколько длин свободного пути ионов по отношению к процессу резонансной перезарядки in (обычно dсл  (3…10)in). В этом случае при своем движении в слое ионы могут испытывать по несколько перезарядок. В результате этого энергия приходящего на мишень иона будет определяться пройденным путем или разностью потенциалов соответствующих сечению последней перезарядки на пути к катоду и обрабатываемой поверхности.

При наличии перезарядок в слое будут генерироваться быстрые атомы, имеющие импульс в направлении к мишени. Их энергия будет определяться той энергией, которую имел быстрый ион в момент перезарядки.

В ситуациях, реализуемых на практике, можно не учитывать газовое усиление в слое. Поэтому в пределах слоя будут выполняться закон сохранения заряда и закон сохранения энергии. Иными словами, плотность потока ионов по сечению слоя будет неизменной. Энергия же, приобретаемая ионами при их движении в слое, в результате процесса перезарядки частично будет передаваться атомам. Если упругие столкновения ионов и атомов в слое отсутствуют, то суммарная плотность потока энергии dPi/dS, приносимой ионами и быстрыми атомами на обрабатываемую поверхность, может быть вычислена как

,

где  плотность ионного тока в слое, Uсл  падение напряжения на нем. При наличии упругих столкновений часть энергии, из приобретаемой ионами в слое, будет уноситься атомами, получившими в результате упругих столкновений импульс в направлении от мишени.

Для вычисления энергетических спектров необходимо знать распределение потенциала по слою. Его вид будет определяться характером движения ионов в слое.

В реальных режимах ионно-плазменного распыления отношение dсл/П при постоянном напряжении на слое практически не зависит от давления газа. При постоянном давлении отношение dсл/П медленно убывает с ростом напряжения на слое.

Если принять, что распределение потенциала в слое подчиняется линейному закону, то для распределения ионов по энергиям можно получить

.

Энергетический спектр быстрых атомов перезарядки на обрабатываемой поверхности имеет вид:

,

где ау – средняя длина свободного пути атома перезарядки по отношению к упругим взаимодействиям с атомными частицами.

При линейном распределении потенциала в слое энергетическое распределение быстрых атомов перезарядки будет иметь вид:

Зная энергетические спектры ионов и атомов, бомбардирующих обрабатываемую поверхность, можно рассчитать эффективный коэффициент распыления:

,

где Eпор = 4Eсв /  пороговая энергия распыления (Eсв – энергия связи атомов обрабатываемом изделии).

При распылении поверхности моноэнергетическим потоком ионов скорость ионного распыления определяется выражением

,

где Мм и м  масса и плотность материала мишени; Nа  число Авогадро; е  заряд электрона; ji  плотность ионного тока на мишени.

Вольтамперная характеристика диода с подвижной плазменной границей

В некоторых случаях эмиссионная граница находится в области, где концентрация нейтралов мала, тогда ими можно пренебречь или учесть в виде малых добавок. В этом случае пространственное положение эмиссионной границы устанавливается под влиянием двух факторов: эмиссионной способности плазмы, проникающей в вакуум, и величины напряжения, ускоряющего частицы. Для получения основных результатов в аналитическом виде будем рассматривать плоский плазменный диод.

Параметры промежутка: расстояние между плоскостью анода и экстрактора xэ; напряжение экстрактора Uэ и концентрация проникающей плазмы должны быть выбраны таким образом, чтобы в рабочем режиме граница плазмы xгр находилась в ускоряющем промежутке. В расчетах будем пренебрегать изменением потенциала в проникающей плазме в зависимости от x, так как оно значительно меньше Uэ (обычно Uэ≥1 кВ).

На границе плазмы должны быть выполнены два условия:

и

где - плотность тока слева и справа от границы плазмы (в плазме и вакууме).

Плотность тока заряженных частиц в плазме определяется выражением

,

где e – заряд электрона, - концентрация частиц в плоскости границы плазмы, - функция, зависящая от рода извлекаемых частиц, и их функции распределения по скоростям. В случае извлечения электронов

При извлечении ионов из плазмы с максвелловским распределением электронов по скоростям:

где – постоянная Больцмана, - температура электронов в плазме, - масса иона.

В вакуумном промежутке должен выполняться закон «степени 3/2», который запишем в виде

где - параметр, зависящий от рода извлекаемых частиц (для электронов он равен 2,33 10-6, для ионов - 5,48 10-8 µ-1/2, µ - атомный номер иона); - параметр, учитывающий искажение потенциала в ускоряющей промежутке за счет частичной компенсации объемного заряда ускоряемых частиц, частицами другого знака.

Распределение концентрации проникающей в вакуум плазмы, может быть описано выражением вида

,

где - безразмерная координата; – концентрация заряженных частиц в плоскости анода; - безразмерная постоянная, которая необходима для того, чтобы была конечной величиной.

Координата границы проникающей плазмы, которая устанавливается в зависимости от параметров промежутка, определяется выражением

.

Вольтамперную характеристику промежутка с подвижной плазменной границей можно получить в виде:

.

Если , то будет выражать плотность тока насыщения частиц из плазмы, когда ее граница расположена в плоскости газоразрядного анода источника. Выражение для вольтамперной характеристики в этом случае имеет вид:

.

Полученное выражение для вольтамперной характеристики отражает влияние параметров проникающей плазмы через и , а также величины ускоряющего напряжения, геометрии промежутка и условий компенсации пространственного заряда ускоряемых частиц через и .

Проанализируем полученное решение. В случае, когда , что равносильно , имеем

.

то есть ток частиц остается конечной величиной, определяемой параметрами проникающей плазмы в плоскости экстрактора, в то время как в обычном диоде в приближении закона «степени 3/2» . При возрастании напряжения граница плазмы перемещается к аноду ( ) и при , . Величина может быть определена из выражения

.

При критическом напряжении на экстракторе ток через промежуток будет равен .