
- •Влияние магнитного поля
- •Циклотронный радиус
- •Циклотронная частота
- •1. Общие характеристик газовых разрядов, возбуждаемых в грк.
- •2. Плазма положительного столба в грк при средних и низких давлениях
- •3. Общие характеристики приэлектродных и пристеночных областей в грк
- •4. Методы введения плазмообразующих сред в объем грк
- •5. Методы повышения эффективности генерации заряженных частиц в грк
- •6. Процессы в области экстракции и первичного формирования потоков заряженных частиц в системах с плазменными эмиттерами
- •Электрическая прочность ускоряющего промежутка в плазменном источнике заряженных частиц
6. Процессы в области экстракции и первичного формирования потоков заряженных частиц в системах с плазменными эмиттерами
Процессы, имеющие место при формировании потоков заряженных частиц в плазменных эмиссионных системах, определяются следующими особенностями:
- на границе плазма – слой практически отсутствует потенциальный барьер, поэтому плотность эмиссионного тока извлекаемых из плазмы заряженных частиц есть плотность тока насыщения;
- согласование эмиссионной способности плазменного эмиттера и первеанса ускоряющего промежутка обеспечивается соответствующим перемещением границы плазмы по отношению к экстрактору;
- в области первичного формирования пучка заряженных частиц всегда имеется достаточно большая концентрация нейтралов, которые оказывают существенное влияние на процессы в ускоряющем промежутке (искажают распределение потенциала в промежутке, влияют на его электрическую прочность и т.п.);
- в случае применения одноапертурной системы формирования ионного пучка, максимальный ток в пучке будет зависеть от напряжения экстракции и массы извлекаемых ионов.
Остановимся на рассмотрении некоторых из указанных особенностей.
Формирование энергетического спектра ионов и быстрых атомов
Для получения интегральных оценок скоростей процессов при ионной бомбардировке поверхности нужно знать энергетические спектры потоков ионов и быстрых атомов.
Наиболее простой является ситуация в бесстолкновительном вакуумном слое. В этом случае разброс ионов по скоростям будет определяться величиной разности потенциалов, локализуемой в плазме положительного столба разряда в ГРК, которая обычно не превышает 20–30 В. Если напряжение на пограничном слое превышает 100 В, указанным разбросом по энергиям в потоке ионов можно пренебречь. Ввиду отсутствия резонансной перезарядки в слое быстрые атомы в нем генерироваться не будут.
Картина явлений, при движении ионов из плазмы к мишени, существенно усложняется в реальных режимах ионно-плазменной обработки, когда dсл составляет несколько длин свободного пути ионов по отношению к процессу резонансной перезарядки in (обычно dсл (3…10)in). В этом случае при своем движении в слое ионы могут испытывать по несколько перезарядок. В результате этого энергия приходящего на мишень иона будет определяться пройденным путем или разностью потенциалов соответствующих сечению последней перезарядки на пути к катоду и обрабатываемой поверхности.
При наличии перезарядок в слое будут генерироваться быстрые атомы, имеющие импульс в направлении к мишени. Их энергия будет определяться той энергией, которую имел быстрый ион в момент перезарядки.
В ситуациях, реализуемых на практике, можно не учитывать газовое усиление в слое. Поэтому в пределах слоя будут выполняться закон сохранения заряда и закон сохранения энергии. Иными словами, плотность потока ионов по сечению слоя будет неизменной. Энергия же, приобретаемая ионами при их движении в слое, в результате процесса перезарядки частично будет передаваться атомам. Если упругие столкновения ионов и атомов в слое отсутствуют, то суммарная плотность потока энергии dPi/dS, приносимой ионами и быстрыми атомами на обрабатываемую поверхность, может быть вычислена как
,
где
плотность ионного тока в слое, Uсл
падение напряжения на нем. При наличии
упругих столкновений часть энергии, из
приобретаемой ионами в слое, будет
уноситься атомами, получившими в
результате упругих столкновений импульс
в направлении от мишени.
Для вычисления энергетических спектров необходимо знать распределение потенциала по слою. Его вид будет определяться характером движения ионов в слое.
В реальных режимах ионно-плазменного распыления отношение dсл/П при постоянном напряжении на слое практически не зависит от давления газа. При постоянном давлении отношение dсл/П медленно убывает с ростом напряжения на слое.
Если принять, что распределение потенциала в слое подчиняется линейному закону, то для распределения ионов по энергиям можно получить
.
Энергетический спектр быстрых атомов перезарядки на обрабатываемой поверхности имеет вид:
,
где ау – средняя длина свободного пути атома перезарядки по отношению к упругим взаимодействиям с атомными частицами.
При линейном распределении потенциала в слое энергетическое распределение быстрых атомов перезарядки будет иметь вид:
Зная энергетические спектры ионов и атомов, бомбардирующих обрабатываемую поверхность, можно рассчитать эффективный коэффициент распыления:
,
где Eпор = 4Eсв / пороговая энергия распыления (Eсв – энергия связи атомов обрабатываемом изделии).
При распылении поверхности моноэнергетическим потоком ионов скорость ионного распыления определяется выражением
,
где Мм и м масса и плотность материала мишени; Nа число Авогадро; е заряд электрона; ji плотность ионного тока на мишени.
Вольтамперная характеристика диода с подвижной плазменной границей
В некоторых случаях эмиссионная граница находится в области, где концентрация нейтралов мала, тогда ими можно пренебречь или учесть в виде малых добавок. В этом случае пространственное положение эмиссионной границы устанавливается под влиянием двух факторов: эмиссионной способности плазмы, проникающей в вакуум, и величины напряжения, ускоряющего частицы. Для получения основных результатов в аналитическом виде будем рассматривать плоский плазменный диод.
Параметры промежутка: расстояние между плоскостью анода и экстрактора xэ; напряжение экстрактора Uэ и концентрация проникающей плазмы должны быть выбраны таким образом, чтобы в рабочем режиме граница плазмы xгр находилась в ускоряющем промежутке. В расчетах будем пренебрегать изменением потенциала в проникающей плазме в зависимости от x, так как оно значительно меньше Uэ (обычно Uэ≥1 кВ).
На границе плазмы должны быть выполнены два условия:
|
|
где
- плотность тока слева и справа от границы
плазмы (в плазме и вакууме).
Плотность тока заряженных частиц в плазме определяется выражением
|
|
где
e
– заряд электрона,
- концентрация частиц в плоскости границы
плазмы,
- функция, зависящая от рода извлекаемых
частиц, и их функции распределения по
скоростям. В случае извлечения электронов
|
|
При извлечении ионов из плазмы с максвелловским распределением электронов по скоростям:
|
|
где
– постоянная
Больцмана,
- температура электронов в плазме,
- масса иона.
В вакуумном промежутке должен выполняться закон «степени 3/2», который запишем в виде
|
|
где
-
параметр, зависящий от рода извлекаемых
частиц (для электронов он равен 2,33 10-6,
для ионов - 5,48 10-8
µ-1/2,
µ - атомный номер иона);
- параметр, учитывающий искажение
потенциала в ускоряющей промежутке за
счет частичной компенсации объемного
заряда ускоряемых частиц, частицами
другого знака.
Распределение концентрации проникающей в вакуум плазмы, может быть описано выражением вида
|
|
где
- безразмерная координата;
– концентрация
заряженных частиц в плоскости анода;
- безразмерная постоянная, которая
необходима для того, чтобы
была конечной величиной.
Координата границы проникающей плазмы, которая устанавливается в зависимости от параметров промежутка, определяется выражением
|
|
Вольтамперную характеристику промежутка с подвижной плазменной границей можно получить в виде:
|
|
Если
,
то
будет выражать плотность тока насыщения
частиц из плазмы, когда ее граница
расположена в плоскости газоразрядного
анода источника. Выражение для
вольтамперной характеристики в этом
случае имеет вид:
|
|
Полученное
выражение для вольтамперной характеристики
отражает влияние параметров проникающей
плазмы через
и
,
а также величины ускоряющего напряжения,
геометрии промежутка и условий компенсации
пространственного заряда ускоряемых
частиц через
и
.
Проанализируем
полученное решение. В случае, когда
,
что равносильно
,
имеем
|
|
то
есть ток частиц остается конечной
величиной, определяемой параметрами
проникающей плазмы в плоскости
экстрактора, в то время как в обычном
диоде в приближении закона «степени
3/2»
.
При возрастании напряжения граница
плазмы перемещается к аноду (
)
и при
,
.
Величина
может быть определена из выражения
|
|
При
критическом напряжении на экстракторе
ток через промежуток будет равен
.