
- •64. Репликация днк: механизм и биологическое значение. Последовательность событий в репликативной вилке. Синтез ведущей и запаздывающей цепей днк.
- •Свойства процесса репликации:
- •65. Репликация днк: основные компоненты реплисом(днк-полимеразы, хеликазы, ssb-белки, топоизомеразы, праймазы, днк-лигазы )прокариот.
- •66. Биологическое значение и механизмы репарации днк.
- •67. Основные системы регуляции метаболизма и их взаимосвязь. Гормоны: общая характеристика и классификация. Роль гормонов в регуляции обмена веществ и функций.
- •Механизмы передачи гормональных сигналов в клетки
- •1. Передача гормональных сигналов через мембранные рецепторы
- •69. Общая характеристика рецепторов гормонов. Механизмы передачи гормональных сигналов в клетки через внутриклеточные рецепторы и рецепторы, сопряженные с ионными каналами.
- •2. Передача сигналов через внутриклеточные рецепторы
- •3. Передача сигналов через рецепторы, сопряжённые с ионными каналами
- •70. Регуляция уровня глюкозы в крови. Роль адреналина, глюкагона и инсулина.
- •71. Основные метаболические пути и регуляторные реакции
- •72. Регуляция экспрессии генов у прокариот: регуляторные и структурные участки лактозного оперона (регуляторный ген, промотор, оператор).
- •Регуляция активности генов у прокариотов:
- •73. Регуляция экспрессии генов у эукариот на уровне транскрипции процессинга рнк и трансляции.
64. Репликация днк: механизм и биологическое значение. Последовательность событий в репликативной вилке. Синтез ведущей и запаздывающей цепей днк.
Реплика́ция ДНК — процесс синтеза дочерней молекулы дезоксирибонуклеиновой кислоты на матрице родительской молекулы ДНК. Этот процесс обеспечивает точную передачу генетической информации из поколения в поколение. По имеющимся данным, в репликации ДНК, включающей узнавание точки начала процесса, расплетение родительских цепей ДНК в репликационной вилке, инициацию биосинтеза дочерних цепей и дальнейшую их элонгацию и, наконец, окончание (терминация) процесса, участвует более 40 ферментов и белковых факторов, объединенных в единую ДНК-репликазную систему, называемую реплисомой.
Цепи молекулы ДНК расходятся, образуют репликационную вилку, и каждая из них становится матрицей, на которой синтезируется новая комплементарная цепь. В результате образуются две новые двуспиральные молекулы ДНК, идентичные родительской молекуле.
Ферменты хеликазы (расплетают концы), топоизомеразы (раскручивают суперспирализованные витки) и ДНК-связывающие белки расплетают ДНК, удерживают матрицу в разведённом состоянии и вращают молекулу ДНК. Правильность репликации обеспечивается точным соответствием комплементарных пар оснований и активностью ДНК-полимераз, способных распознать и исправить ошибку. Источниками энергии и одновременно с этим субстратами являются dATP, dGTP, dTTP, dCTP. У прокариот выделено три типа ДНК-полимераз. Функцию элонгации выполняет ДНК-полимераза ІІІ. ДНК-полимеразы І и ІІ выполняют репарационные функции. Для затравки (инициации) требуется олигорибонуклеотид, который синтезируется праймазой.
Свойства процесса репликации:
матричный — последовательность синтезируемой цепи ДНК однозначно определяется последовательностью материнской цепи в соответствии с принципом комплементарности;
полуконсервативный — одна цепь молекулы ДНК, образовавшейся в результате репликации, является вновь синтезированной, а вторая — материнской;
идёт в направлении от 5’-конца новой молекулы к 3’-концу;
полунепрерывный — одна из цепей ДНК синтезируется непрерывно, а вторая — в виде набора отдельных коротких фрагментов (фрагментов Оказаки);
начинается с определённых участков ДНК, которые называются сайтами инициации репликации (англ. origin).
Сложность процесса репликации ДНК объясняется тем, что обе цепи реплицируются одновременно, хотя имеют разное направление (5'–>3' и 3'–>5'); кроме того, рост дочерних цепей также должен происходить в противоположных направлениях. Элонгация каждой дочерней цепи может осуществляться только в направлении 5'–>3'. Р. Оказаки высказал предположение, подтвержденное экспериментальными данными, что синтез одной из дочерних цепей осуществляется непрерывно в одном направлении, в то время как синтез другой дочерней цепи происходит прерывисто, путем соединения коротких фрагментов (в честь автора названы фрагментами Оказаки), в свою очередь синтезирующихся в противоположном направлении.
Как видно, синтез ведущей цепи ДНК идет всегда в направлении 5'–>3', соответствующем направлению движения репликационной вилки. Сохраняя правило синтеза дочерних молекул ДНК 5'–>3', синтез на второй цепи родительской ДНК идет в направлении, противоположном движению репликационной вилки. В зависимости от типа клетки фрагменты Оказаки имеют разные размеры – от нескольких сот до нескольких тысяч нуклеотидов (150–200 у эукариот и 1000–2000 у бактерий).
О
бразование
каждого фрагмента Оказаки требует
наличия короткого затравочного
комплементарного праймера – участка
РНК, синтез которого катализируется
праймазой. Затем при участии ДНК-полимеразы
III синтезируются длинные участки ДНК.
РНК-затравки далее вырезаются при
участии ДНК-полимеразы I, а свободные
места их (бреши) замещаются (достраиваются)
комплементарными дезоксирибонуклеотидами
под действием той же ДНК-полимеразы I;
наконец, сшивание разъединенных участков
отстающей цепи осуществляется при
помощи ДНК-лигаз.