
- •1) Предмет статики. Основные понятия и определения
- •2) Аксиомы статики
- •3) Связи и их реакции. Принцип освобождаемости от связей. Основные виды связей.
- •4) Равнодействующая системы сходящихся сил. Геометрический и аналитический способы определения равнодействующей.
- •5) Условия равновесия системы сходящихся сил в геометрической и аналитической формах. Теорема о трех непараллельных силах.
- •6) Сложение двух параллельных сил.
- •7) Пара сил. Векторный момент пары сил. Алгебраический момент пары сил
- •8) Свойства пар сил. Эквивалентность пар. Теоремы об эквивалентности пар.
- •9) Сложение пар сил. Условие равновесия системы пар сил.
- •11) Момент силы относительно оси. Аналитическое выражение момента силы относительно оси.
- •12) Связь между моментом силы относительно оси и векторным моментом силы относительно точки.
- •13) Основная лемма статики о параллельном переносе силы.
- •14) Основная теорема статики о приведении системы сил к заданному центру (теорема Пуансо). Главный вектор и главный момент системы сил.
- •15) Определение главного вектора и главного момента произвольной плоской системы сил
- •16) Различные случаи приведения произвольной плоской системы сил.
- •17) Теорема Вариньона о моменте равнодействующей произвольной плоской системы сил.
- •19) Уравнения равновесия плоской системы параллельных сил.
- •20) Опоры и опорные реакции балок. Распределённые нагрузки.
- •21) Статически определимые и неопределимые системы. Расчет составных конструкций.
- •22) Определение главного вектора и главного момента произвольной пространственной системы сил
- •23) Приведение системы сил к динаме. Уравнение центральной оси.
- •24)Уравнение произвольной пространственной системы сил. Условие равновесия системы параллельных сил в пространстве. Равновесие несвободного твёрдого тела в пространстве (в конспекте лучше).
- •26) Трение скольжения. Законы трения. Угол и конус трения. Условия равновесия тел на шероховатой поверхности.
- •27) Трение гибких тел. Трение качения. Устойчивость против опрокидывания. Трение гибких тел.
- •28) Расчёт плоских ферм: основные особенности.
- •30) Методы нахождения центра тела:
- •1)Предмет кинематикаю Относительность движения. Траектория движения точки. Основная задача кинематики.
- •2)Способы задания движеня точки.
- •9)Поступательное движение твёрдого тела. Теорема о траекториях, скоростях и ускорения телапри поступательном движении.
- •10)Вращательное движение твёрдого тела вокруг неподвижной оси. Уравнения вращательного движения тела. Угловая скорость и угловое ускорение. Вектор угловой скорости и углового ускорения.
- •12) Преобразование простейших движений твёрдого тела. Передаточные механизмы.
- •13) Определение кинетических характеристик движения точек вращающегося тела. Траектории, закон движения. Скорость и ускорение тосек вращающегося тела.
- •16) Определение скоростей точек плоской фигуры. Теорема о проекциях скоростей точек плоской фигуры.
- •17) Мгновенный центр скоростей. Определение скорости с помощью мцс. Частные случаи нахождения мцс.
- •18) Определение ускорений точек плоской фигуры. Мгновенный центр ускорений.
- •19) Сферическое движение твёрдого тела. Углы Эйлера. Определение ускорений точек тела при сферическом движении.
- •20) Теорема Эйлера-Даламбера. Мгновенная ось вращения. Мгновенные угловая скорость и угловое ускорение.
- •21) Скорость точек тела при сферическом движении. Формулы Эйлера. Определение ускорений точек тела при сферическом движении.
- •22) Общий случай движения свободного твёрдого тела. Уравнения движения свободного твёрдого тела. Скорости точек тела.
- •24) Теорема сложения скоростей при сложном движении точки.
- •26) Сложное движение твердого тела. Сложное поступательное движение.
- •27) Сложение одинакого направленных вращений вокруг параллельных осей.
- •28) Сложение противоположно направленных вращений вокруг параллельных осей.
- •29) Пара вращений.
- •30) Сложение вращений вокруг пересекающихся осей.
1)Предмет кинематикаю Относительность движения. Траектория движения точки. Основная задача кинематики.
Кинематика – раздел теоретической механики изучающий законы механического движения материальных точек или тел без учёта причин, вызывающих это движение. Механическое движение – изменение положения тела в пространстве с течением времени. Любое движение точки или тела рассматривается относительно какой-либо системы отсчёта. Обычно систему отсчёта связывают с землёй, считая её неподвижной. Если рассматривать движение тела относительно подвижной системы отсчёта, то при расчётах необходимо учитывать движение подвижной системы отсчёта относительно неподвижной. Траектория точки – геометрическое место последовательных положений точки в процессе её движения. Прямолинейное, если траектория-прямая, в других случаях криволинейное.
Основные задачи кинематики: - определение закона движения точки или тела в выбранной системе отсчёта. - По заданному закону определить кинематические характеристики движения.
2)Способы задания движеня точки.
Движение точки считается заданным, если существует зависимость, позволяющая определить положение точки в пространстве в произвольный момент времени, эта зависимость называется законом движения. Способы задания движения: (1) Естественный – используется. Если известна траектория движения, уравнение движения точки по этой траектории, начало отсчёта и положительное направлении движения. S=S(t) – угловая координата. (2) Векторный – положение описывается радиус-вектором проведённым из некоторой неподвижной точки. r=r(t) уравнение движения при векторном способе. Траектори в данном случае является гадографом радиус-вектора. (3) координатный – положение точки задаётся зависящими от времени дифференцируемыми функциями координат. X=x(t) y=y(t) z=z(t). y=f(x) – уравнение траектории.
3)Скорость точки при векторном способе задания движения.
Величина равная отношению приращения дэльта(r) вектора r к промежуточному времени дэльта(t) за который произошло это приращение называется средней скоростью точки за это время Vср.= дэльта(r)/дэльта(t). При дэльта(t) стремящимся к 0: V= dr/dt скорость точки в данный момент времени. Скорость всегда направлена по касательной к траектории движения.
4)Ускорение точки при векторном способе задания движения.
Величина равная отношению приращения дэльта(V) вектора r к промежуточному времени дэльта(t) за который произошло это приращение называется средним ускорением точки за это время a cр.= дэльта(V)/дэльта(t). При дэльта(t) стремящимся к 0: a= dV/dt ускорение точки в данный момент времени. Ускорение всегда направлена по касательной к гадографу вектора скорости.
5)Скорость и ускорение точки при координатном способе задания движения.
V= dr/dt = d(xi+yj+zk)/dt = Vxi + Vyj + Vzk где Vx=dx/dt, Vy=dy/dt, Vz=dz/dt – проекции вектора скорости на оси координат V=корень(Vx^2+Vy^2+Vz^2)Положени вектора Vопределяется направлением косинусов , а именно углов между направлением вектора V и положительно направленной соответствующей оси координат.
6)Скорость точки при естественном способе задания движения.
V= dS/dt*dr/dS здесь dS/dt – v – алгебраическая скорость точки, а dr/ds – ŧ(тау) – вектор, направленный по направлению вектора dr. V= ŧ(тау)*v.
7)Естественный трёхгранник.Разложения ускорения по естественным осям. Касательное и нормальное ускорение.
Если выбрать в качестве осей координат независимые оси ŧ(тау), n, в - которые связаны с движущейся точкой при этом ŧ(тау)-является касательной, n – нормалью , в – бинормалью, тогда ŧ(тау) и n образуют касательную плоскость, n и в нормальную плоскость, в и ŧ(тау) – спрямляющуюся плоскость, это и есть естественный трёхгранник. Нормальное ускорение точки всегда направлено к центру кривизны траектории(a норм. =V^2/q, где q – радиус кривизны траектории), а касательное по касательной к траектории, если знаки касательного ускорения и скорости совпадают, то и направления их тоже совпадают, или наоборот(а ŧ(тау)=dV/dt)
8) Частные случаи движения точки. Равномерное и равнопеременное движение.
Касательное ускорение показывает изменение скорости по величине, нормально – по направлению. Если (а ŧ(тау)=0) и ( a норм.=0) – движение равномерное и прямолинейное, если (а ŧ(тау)=0) и ( a норм. не равно 0) то криволинейное и равномерное, если (а ŧ(тау)не равно 0) и ( a норм.=0) то прямолинейное равномерное, если (а ŧ(тау) не равно 0) и ( a норм. не равно 0) то криволинейное неравномерное. При постоянном а ŧ(тау) движение либо равноускоренное, либо равнозамедленное.