
- •1) Предмет статики. Основные понятия и определения
- •2) Аксиомы статики
- •3) Связи и их реакции. Принцип освобождаемости от связей. Основные виды связей.
- •4) Равнодействующая системы сходящихся сил. Геометрический и аналитический способы определения равнодействующей.
- •5) Условия равновесия системы сходящихся сил в геометрической и аналитической формах. Теорема о трех непараллельных силах.
- •6) Сложение двух параллельных сил.
- •7) Пара сил. Векторный момент пары сил. Алгебраический момент пары сил
- •8) Свойства пар сил. Эквивалентность пар. Теоремы об эквивалентности пар.
- •9) Сложение пар сил. Условие равновесия системы пар сил.
- •11) Момент силы относительно оси. Аналитическое выражение момента силы относительно оси.
- •12) Связь между моментом силы относительно оси и векторным моментом силы относительно точки.
- •13) Основная лемма статики о параллельном переносе силы.
- •14) Основная теорема статики о приведении системы сил к заданному центру (теорема Пуансо). Главный вектор и главный момент системы сил.
- •15) Определение главного вектора и главного момента произвольной плоской системы сил
- •16) Различные случаи приведения произвольной плоской системы сил.
- •17) Теорема Вариньона о моменте равнодействующей произвольной плоской системы сил.
- •19) Уравнения равновесия плоской системы параллельных сил.
- •20) Опоры и опорные реакции балок. Распределённые нагрузки.
- •21) Статически определимые и неопределимые системы. Расчет составных конструкций.
- •22) Определение главного вектора и главного момента произвольной пространственной системы сил
- •23) Приведение системы сил к динаме. Уравнение центральной оси.
- •24)Уравнение произвольной пространственной системы сил. Условие равновесия системы параллельных сил в пространстве. Равновесие несвободного твёрдого тела в пространстве (в конспекте лучше).
- •26) Трение скольжения. Законы трения. Угол и конус трения. Условия равновесия тел на шероховатой поверхности.
- •27) Трение гибких тел. Трение качения. Устойчивость против опрокидывания. Трение гибких тел.
- •28) Расчёт плоских ферм: основные особенности.
- •30) Методы нахождения центра тела:
- •1)Предмет кинематикаю Относительность движения. Траектория движения точки. Основная задача кинематики.
- •2)Способы задания движеня точки.
- •9)Поступательное движение твёрдого тела. Теорема о траекториях, скоростях и ускорения телапри поступательном движении.
- •10)Вращательное движение твёрдого тела вокруг неподвижной оси. Уравнения вращательного движения тела. Угловая скорость и угловое ускорение. Вектор угловой скорости и углового ускорения.
- •12) Преобразование простейших движений твёрдого тела. Передаточные механизмы.
- •13) Определение кинетических характеристик движения точек вращающегося тела. Траектории, закон движения. Скорость и ускорение тосек вращающегося тела.
- •16) Определение скоростей точек плоской фигуры. Теорема о проекциях скоростей точек плоской фигуры.
- •17) Мгновенный центр скоростей. Определение скорости с помощью мцс. Частные случаи нахождения мцс.
- •18) Определение ускорений точек плоской фигуры. Мгновенный центр ускорений.
- •19) Сферическое движение твёрдого тела. Углы Эйлера. Определение ускорений точек тела при сферическом движении.
- •20) Теорема Эйлера-Даламбера. Мгновенная ось вращения. Мгновенные угловая скорость и угловое ускорение.
- •21) Скорость точек тела при сферическом движении. Формулы Эйлера. Определение ускорений точек тела при сферическом движении.
- •22) Общий случай движения свободного твёрдого тела. Уравнения движения свободного твёрдого тела. Скорости точек тела.
- •24) Теорема сложения скоростей при сложном движении точки.
- •26) Сложное движение твердого тела. Сложное поступательное движение.
- •27) Сложение одинакого направленных вращений вокруг параллельных осей.
- •28) Сложение противоположно направленных вращений вокруг параллельных осей.
- •29) Пара вращений.
- •30) Сложение вращений вокруг пересекающихся осей.
20) Теорема Эйлера-Даламбера. Мгновенная ось вращения. Мгновенные угловая скорость и угловое ускорение.
Теорема: твёрдое тело имеющее одну неподвижную точку можно переместить из одного положения в другое поворотом вокруг некоторой оси проходящей через эту точку. В соответствии с теоремой Эйлера-Даламбера вращение тел при сферическом движении происходит вокруг некоторой оси которая постоянно меняет своё положение (мгновенная ось вращения). Вектор угловой скорости ω всегда направлен вдоль мгновенной оси и в процессе движения постоянно меняет своё положение.
Мгновенная
угловая скорость определяется как
производная от угловой координаты
от времени t.
ω=d
/dt
Мгновенное угловое ускорение определяется как производная от угловой скорости по времени
έ=dω/dt
21) Скорость точек тела при сферическом движении. Формулы Эйлера. Определение ускорений точек тела при сферическом движении.
Скорости точек тела определяются по формулам Эйлера
x,y,z
– проекции вектора угловой скорости.
Проекция вращательной (окружной)
скорости: vx=yz
– zy;
vy=zx
– xz;
vz=xy
– yx.
Если ось вращения совпадает с осью z,
то vx=
– y;
vy=x.
Ускорение:
.
Вращательное
ускорение
,
модуль вращат. уск. авр=rsin,
направлено по касательной к траектории
точки, т.е. параллельно скорости.
Центростремительное (осестремительное)
ускорение
,
ац=2R,
направлено по радиусу к оси (центру)
вращения. Модуль полного уск.:
.
Угол, между векторами полного и
центростремит-ного ускорений:
.
Вектор скорости точки направлен перпендикулярно плоскости векторов ω и r таким образом чтобы смотря ему навстречу поворот на наименьший угол от ω к Vr был виден против часовой стрелки.
22) Общий случай движения свободного твёрдого тела. Уравнения движения свободного твёрдого тела. Скорости точек тела.
Движение
свободного тв.тела
(общий
случай движения). Свободное тв.тело
имеет шесть степеней свободы. При
рассмотрении движения св.тв.тела, кроме
неподвижной системы координат Oxyz,
вводится подвижная система координат
Ax1y1z1,
которая связана с телом в точке А. Тогда
движ. св.тв.тела представляет собой
сложное движение, которое можно
рассматривать как состоящее из
поступательного движения вместе с
полюсом (А) и сферич. движ. вокруг полюса.
Ур-ия движ.св.тв.тела: xA=f1(t);
yA=f2(t);
zA=f3(t);
=f4(t);
=f5(t);
=f6(t)
(углы Эйлера). Первые три ур-ия определяют
поступательную часть движ. и зависят
от выбора полюса, остальные три определяют
сферич. движ. вокруг полюса и от выбора
полюса не зависят. Скорость любой точки
св.тв.тела = геометрической сумме
скорости полюса и скорости этой точки
в ее сферическом движении вокруг полюса.
23) Сложное движение точки. Абсолютное, относительное и переносное движения. Абсолютные, относительные и переносные скорость и ускорение точки. Основное векторное уравнение кинематики сложного движения.
Сложным называется такое движение тела при котором оно одновременно участвует в двух или нескольких движениях. В рассмотрение вводится подвижная и неподвижная система отсчёта аналогично сложному движению тела. Сложное движение тела рассматривается как совокупность двух движений – относительного и переносного.В этом случае вводится подвижная система координат (Oxyz), которая совершает заданное движение относительно неподвижной (основной) системы координат (O1x1y1z1). Абсолютным движением точки назыв. движение по отношению к неподвижной системе координат. Относительное движение – движение по отношению к подвижной системе коорд. (движение по вагону). Переносное движение – движение подвижной сист. координат относительно неподвижной (движение вагона).