
- •Метод сечений. Основные гипотезы о деформированном теле и их значении.
- •Чистый сдвиг. Деформация при сдвиге. Закон Гука при сдвиге.
- •Диаграммы растяжения и сжатия для пластичных и хрупких материалов. Их характерные точки. Характеристики прочности и пластичности.
- •Кручение. Условие прочности и жескости при кручении.
- •Напряжённое состояние в точке. Определение напряжений в наклонной площадке для общего случая напряжённого состояния.
- •Потенциальная энергия деформации для трёхосного напряжённого состояния.
- •Понятие о напряжении. Размерность. Напряжение в поперечных и наклонных сечениях прямого бруса при растяжении – сжатии.
- •Геометрические характеристики плоских сечений.
- •Продольная и поперечная деформации. Упругие постоянные материалов. Их смысл. Зависимость между ними.
- •Удельная (потенциальная) энергия деформации при растяжении (сжатии). Закон Гука в развёрнутом виде.
- •Зависимость между деформацией и перемещением при плоском и объёмном напряжённом состояниях. Обобщённый закон Гука.
- •Диаграмма растяжения с характерными точками и зонами. Понятие о допускаемом напряжении. Коэффициент запаса прочности.
Удельная (потенциальная) энергия деформации при растяжении (сжатии). Закон Гука в развёрнутом виде.
Внешние силы в процессе деформации тела производят работу. Часть затраченной на деформацию энергии поглощается телом и накапливается в нем в виде потенциальной энергии, называемой потенциальной энергией деформации. Остальная часть расходуется на необратимые процессы - нагрев тела, изменение его электромагнитных свойств и т. д. Соотношение между этими двумя слагаемыми энергии внешних сил изменяется в процессе нагружения тела.
В пределах упругих деформаций затрата энергии на необратимые процессы весьма незначительна, и поэтому можно считать, что в пределах упругости работа внешних сил полностью переходит в потенциальную энергию деформации. Таким образом, упругое тело является как бы аккумулятором энергии.
При разгрузке идеально упругого тела накопленная в нем потенциальная энергия полностью расходуется на восстановление его первоначальной формы и размеров, причем эту работу производят внутренние силы. Следовательно, потенциальная энергия деформации равна работе внутренних сил упругости на перемещениях точек их приложения, и поэтому всегда может быть выражена через эти силы. Формула (3.44) дает возможность определить удельную потенциальную энергию деформации в общем случае объемного напряженного состояния. В частном случае линейного растяжения, имеем:
. (4.14)
Потенциальная энергия деформации U определится из уравнения (4.15) путем интегрирования по объему:
. (4.15)
Например, в брусе постоянного сечения при действии постоянной по длине силы P, имеем
. (4.16)
Билет 6.
Зависимость между деформацией и перемещением при плоском и объёмном напряжённом состояниях. Обобщённый закон Гука.
Возможны два вида перемещений: перемещение всего тела как единого целого без деформирования — такие перемещения изучает теоретическая механика как перемещения абсолютно твердого тела, и перемещение, связанное с деформацией тела — такие перемещения изучает теория упругости.
Деформирование
тела вызвано разницей в перемещениях
различных его точек. Бесконечно малый
параллелепипед с ребрами
вырезанный из упругого тела около
произвольной точки z
, вследствие различных перемещений его
точек деформируется таким образом, что
изменяется длина его ребер и искажаются
первоначально прямые углы между гранями.
После деформации точки принимают положение При этом точка получит перемещение, составляющие которого в плоскости чертежа равны и Точка отстоящая от точки на бесконечно малом расстоянии получит перемещение, составляющие которого будут отличаться от составляющих перемещения точки на бесконечно малую величину за счет изменения координаты X
Составляющие перемещения точки будут отличаться от составляющих перемещения точки на бесконечно малую величину за счет изменения координаты φ:
Длина проекции ребра на ось после деформации:
(1.31)
Проекция абсолютного удлинения ребра на ось
Относительное удлинение вдоль оси
(1.32)
называется линейной деформацией по направлению оси .