
- •Ответы по электротехнике.
- •Электрическая цепь, электрическая схема, схема замещения. Основные элементы электрической схемы.
- •Основные законы электрических цепей. Анализ электрических цепей с помощью законов Кирхгофа.
- •Метод двух узлов.
- •Метод эквивалентного генератора
- •Однофазные цепи синусоидального. Получение синусоидальной эдс. Действующее значение синусоидальных эдс, напряжений и токов.
- •Представление синусоидальных величин тригонометрическими функциями , векторами и комплексными числами .
- •Последовательные цепи синусоидального тока: цепи с резистором, индуктивностью и конденсатором.
- •Анализ последовательного соединения r, l, c.
- •Активное реактивное и полное сопротивление . Треугольники сопротивлений.
- •Резонанс напряжений в цепи переменного тока
- •Параллельное соединение. Активная, реактивная и полная проводимости. . Треугольники проводимостей и токов.
- •Резонанс Токов
- •Смешанное соединение, анализ и векторная диаграмма.
- •17) Коэффициент мощности. Его технико-экономическое значение. Способы его улучшения.
- •18. Трехфазные цепи. Получение системы трех эдс. Представление системы трех эдс векторами и комплексными числами.
- •19.Схемы соединения трехфазных систем
- •Соединение в звезду
- •Соединение в треугольник
- •20. С оединение звездой в трехфазной цепи с нулевым проводом. Роль нулевого провода.
- •21. Соединение звездой без нулевого провода при симметричной и несимметричной нагрузках.
- •22. Соединение треугольником в трехфазной цепи при симметричной и несимметричной нагрузках
- •Основные свойства магнитного поля:
- •25.1) Основные законы магнитной цепи
- •26) Закон электромагнитной индукции
- •27. Катушка со стальным сердечником в цепи переменного тока. Схема замещения. Векторная диаграмма.
- •28. Переходные процессы в электрических цепях. Общие принципы исследования переходных процессов. Законы коммутации. Постоянные времени.
- •29. Переходные процессы в цепях с конденсатором (короткое замыкание в цепи r, c; подключение цепи r,c к источнику постоянного напряжения). Конденсаторные реле времени.
- •Переходные процессы в цепи с последовательно соединенными участками r и l
- •32:Примеры использования переходных процессов в реальных устройствах
- •33:Переходные процессы в электрических цепях с двумя накопителями энергии. Короткое замыкание цепи rlc. Апериодический и колебательный режимы.
26) Закон электромагнитной индукции
Закон Фарадея
Согласно закону электромагнитной индукции Фарадея (в СИ):
где
— электродвижущая
сила,
действующая вдоль произвольно выбранного
контура,
— магнитный
поток через
поверхность, натянутую на этот контур.
Знак «минус» в формуле отражает правило Ленца, названное так по имени русского физика Э. Х. Ленца:
Индукционный ток, возникающий в замкнутом проводящем контуре, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток.
Для катушки, находящейся в переменном магнитном поле, закон Фарадея можно записать следующим образом:
где
— электродвижущая сила,
—
число витков,
— магнитный поток через один виток,
— потокосцепление катушки.
САМОИНДУКЦИЯ
Каждый проводник, по которому протекает эл.ток, находится в собственном магнитном поле.
При
изменении силы тока в проводнике меняется
м.поле, т.е. изменяется магнитный поток,
создаваемый этим током. Изменение
магнитного потока ведет в возникновению
вихревого эл.поля и в цепи появляется
ЭДС индукции.
Это
явление называется самоиндукцией.
Самоиндукция -
явление возникновения ЭДС индукции в
эл.цепи в результате изменения силы
тока.
Возникающая при этом ЭДС
называется ЭДС самоиндукции
Проявление явления самоиндукции
Замыкание
цепи
При
замыкании в эл.цепи нарастает ток, что
вызывает в катушке увеличение магнитного
потока, возникает вихревое эл.поле,
направленное против тока, т.е. в катушке
возникает ЭДС самоиндукции, препятствующая
нарастанию тока в цепи ( вихревое поле
тормозит электроны).
В результате Л1
загорается позже, чем
Л2.
Размыкание
цепи
При
размыкании эл.цепи ток убывает, возникает
уменьшение м.потока в катушке, возникает
вихревое эл.поле, направленное как ток
( стремящееся сохранить прежнюю силу
тока) , т.е. в катушке возникает ЭДС
самоиндукции, поддерживающая ток в
цепи.
В результате Л при выключении ярко
вспыхивает.
Вывод
в
электротехнике явление самоиндукции
проявляется при замыкании цепи (эл.ток
нарастает постепенно) и при размыкании
цепи (эл.ток пропадает не сразу).
ИНДУКТИВНОСТЬ
Эл.ток
создает собственное магнитное поле .
Магнитный поток через контур пропорционален
индукции магнитного поля (Ф ~ B), индукция
пропорциональна силе тока в проводнике
(B
~ I), следовательно магнитный поток
пропорционален силе тока (Ф ~ I).
ЭДС
самоиндукции зависит от скорости
изменения силы тока в эл.цепи, от свойств
проводника
(размеров и формы) и
от относительной магнитной проницаемости
среды, в которой находится
проводник.
Физическая величина,
показывающая зависимость ЭДС самоиндукции
от размеров и формы проводника и от
среды, в которой находится проводник,
называется коэффициентом самоиндукции
или индуктивностью.
Индуктивность -
физ. величина, численно равная ЭДС
самоиндукции, возникающей в контуре
при изменении силы тока на 1Ампер за 1
секунду.
Также индуктивность можно
рассчитать по формуле:
где
Ф - магнитный поток через контур, I - сила
тока в контуре.
Единицы измерения индуктивности в системе СИ:
Индуктивность
катушки зависит от:
числа витков,
размеров и формы катушки и от относительной
магнитной проницаемости среды
(
возможен сердечник).
Индуктивность взаимная - величина, характеризующая магнитную связь двух или более электрических цепей (контуров). Если имеется два проводящих контура , то часть линий магнитной индукции, создаваемых током в первом контуре, будет пронизывать площадь, ограниченную вторым контуром (т. е. будет сцеплена с контуром 2). Магнитный поток Ф12 через контур 2, созданный током I1 в контуре 1, прямо пропорционален току:
Коэффициент пропорциональности M12 зависит от размеров и формы контуров 1 и 2, расстояния между ними, их взаимного расположения, а также от магнитной проницаемости окружающей среды и называется взаимной индуктивностью или коэффициентом взаимной индукции контуров 1 и 2. В системе СИ И. в. измеряется в Генри.
Трансформаторная ЭДС. Принцип действия трансформатора основан на явлении электромагнитной индукции. Линии индукции магнитного поля, создаваемого переменным током в первичной обмотке, благодаря наличию сердечника практически без потерь пронизывают витки вторичной обмотки. Поскольку магнитный поток во вторичной обмотке изменяется со временем (т.к. в первичной обмотке переменный ток), то согласно закону Фарадея в ней возбуждается ЭДС индукции. Трансформатор может работать только на переменном токе, т.к. магнитный поток, созданный постоянным током, не изменяется с течением времени.
Пусть первичная обмотка трансформатора подключена к источнику тока с переменной ЭДС E1 и с действующим значением напряжения U1. На вторичной обмотке ЭДС E2 и напряжение U2.
Из
законов Ома
следует,
что напряжение на обмотке равно
(1)
где r — сопротивление обмотки. При изготовлении трансформатора сопротивление первичной обмотки r1 делают очень малым, поэтому часто им можно пренебречь. Тогда
Если пренебречь потерями магнитного потока в сердечнике, то в каждом витке вторичной обмотки будет индуцироваться точно такая же ЭДС индукции e1, как и ЭДС индукции e2 в каждом витке первичной обмотки, т.е. e1 = e2. Следовательно, отношение ЭДС в первичной E1 и вторичной E2 обмотках равно отношению числа витков в них:
(2)
Трансформаторный ток. Токи обмоток обратно пропорциональны числам витков (I1/I2 приблиз =w1/w2=1/n). С увеличением тока активно-индуктивного приемника вторичное напряжение несколько снижается.
Поток рассеивания.
Рис.1.11. К определению магнитного потока рассеяния в катушке с ферромагнитным сердечником
часть магнитного потока катушки замыкается не по сердечнику, а по воздуху. Эта часть потока носит название потока рассеивания Фр (рис. 1.11). Таким образом, полный поток, сцепленный с витками катушки равен
|
(1.14) |
На основании закона Ома для магнитной цепи (1.7) можно написать выражение для потока рассеяния:
|
|
Так
как
,
то
.То
есть поток рассеяния
,
в отличие от потока
в
сердечнике, совпадает по фазе с током
и связан с ним линейной зависимостью.
Следовательно, на векторной диаграмме
вектор потока
будет
совпадать с вектором тока
(рис.1.12).
Рис.1.12. Векторная диаграмма магнитных потоков, ЭДС и токов катушки с ферромагнитным сердечником