- •Ответы по электротехнике.
- •Электрическая цепь, электрическая схема, схема замещения. Основные элементы электрической схемы.
- •Основные законы электрических цепей. Анализ электрических цепей с помощью законов Кирхгофа.
- •Метод двух узлов.
- •Метод эквивалентного генератора
- •Однофазные цепи синусоидального. Получение синусоидальной эдс. Действующее значение синусоидальных эдс, напряжений и токов.
- •Представление синусоидальных величин тригонометрическими функциями , векторами и комплексными числами .
- •Последовательные цепи синусоидального тока: цепи с резистором, индуктивностью и конденсатором.
- •Анализ последовательного соединения r, l, c.
- •Активное реактивное и полное сопротивление . Треугольники сопротивлений.
- •Резонанс напряжений в цепи переменного тока
- •Параллельное соединение. Активная, реактивная и полная проводимости. . Треугольники проводимостей и токов.
- •Резонанс Токов
- •Смешанное соединение, анализ и векторная диаграмма.
- •17) Коэффициент мощности. Его технико-экономическое значение. Способы его улучшения.
- •18. Трехфазные цепи. Получение системы трех эдс. Представление системы трех эдс векторами и комплексными числами.
- •19.Схемы соединения трехфазных систем
- •Соединение в звезду
- •Соединение в треугольник
- •20. С оединение звездой в трехфазной цепи с нулевым проводом. Роль нулевого провода.
- •21. Соединение звездой без нулевого провода при симметричной и несимметричной нагрузках.
- •22. Соединение треугольником в трехфазной цепи при симметричной и несимметричной нагрузках
- •Основные свойства магнитного поля:
- •25.1) Основные законы магнитной цепи
- •26) Закон электромагнитной индукции
- •27. Катушка со стальным сердечником в цепи переменного тока. Схема замещения. Векторная диаграмма.
- •28. Переходные процессы в электрических цепях. Общие принципы исследования переходных процессов. Законы коммутации. Постоянные времени.
- •29. Переходные процессы в цепях с конденсатором (короткое замыкание в цепи r, c; подключение цепи r,c к источнику постоянного напряжения). Конденсаторные реле времени.
- •Переходные процессы в цепи с последовательно соединенными участками r и l
- •32:Примеры использования переходных процессов в реальных устройствах
- •33:Переходные процессы в электрических цепях с двумя накопителями энергии. Короткое замыкание цепи rlc. Апериодический и колебательный режимы.
Соединение в треугольник
В связи с тем, что значительная часть приемников, включаемых в трехфазные цепи, бывает несимметричной, очень важно на практике, например, в схемах с осветительными приборами, обеспечивать независимость режимов работы отдельных фаз. Кроме четырехпроводной, подобными свойствами обладают и трехпроводные цепи при соединении фаз приемника в треугольник. Но в треугольник также можно соединить и фазы генератора (см. рис. 8).
Для
симметричной системы ЭДС имеем
.
Таким
образом, при отсутствии нагрузки в фазах
генератора в схеме на рис. 8 токи будут
равны нулю. Однако, если поменять местами
начало и конец любой из фаз, то
и
в треугольнике будет протекать ток
короткого замыкания. Следовательно,
для треугольника нужно строго соблюдать
порядок соединения фаз: начало одной
фазы соединяется с концом другой.
Схема соединения фаз генератора и приемника в треугольник представлена на рис. 9.
Очевидно, что при соединении в треугольник линейные напряжения равны соответствующим фазным. По первому закону Кирхгофа связь между линейными и фазными токами приемника определяется соотношениями
Аналогично можно выразить линейные токи через фазные токи генератора.
На рис. 10 представлена векторная диаграмма симметричной системы линейных и фазных токов. Ее анализ показывает, что при симметрии токов
|
(5) |
В трехфазных цепях различают фазные и линейные напряжения. Фазное напряжение UФ – напряжение между началом и концом фазы или между линейным проводом и нейтралью (UA, UB, UC у источника; Ua, Ub, Uc у приемника). Если сопротивлением проводов можно пренебречь, то фазное напряжение в приемнике считают таким же, как и в источнике. (UA=Ua, UB=Ub, UC=Uc). За условно положительные направления фазных напряжений принимают направления от начала к концу фаз.
Линейное напряжение (UЛ) – напряжение между линейными проводами или между одноименными выводами разных фаз (UAB, UBC, UCA). Условно положительные направления линейных напряжений приняты от точек, соответствующих первому индексу, к точкам соответствующим второму индексу (рис. 3.6).
По аналогии с фазными и линейными напряжениями различают также фазные и линейные токи:
Фазные (IФ) – это токи в фазах генератора и приемников.
Линейные (IЛ) – токи в линейных проводах.
При соединении в звезду фазные и линейные токи равны IФ=IЛ. (3.5)
Ток, протекающий в нейтральном проводе, обозначают IN.
По первому закону Кирхгофа для нейтральной точки n (N) имеем в комплексной форме İN=İA+İB+İC. (3.6)
Рис.
3.7
В соответствии с выбранными условными положительными направлениями фазных и линейных напряжений можно записать уравнения по второму закону Кирхгофа.
ÚAB=ÚA−ÚB; ÚBC=ÚB−ÚC; ÚCA=ÚC−ÚA. (3.7)
Согласно этим выражениям на рис. 3.7а построена векторная диаграмма, из которой видно, что при симметричной системе фазных напряжений система линейных напряжений тоже симметрична: UAB, UBC, UCA равны по величине и сдвинуты по фазе относительно друг друга на 120° (общее обозначение UЛ), и опережают, соответственно, векторы фазных напряжений UA, UB, UC, (UФ) на угол 30°.
Действующие значения линейных напряжений можно определить графи-чески по векторной диаграмме или по формуле (3.8), которая следует из треугольника, образованного векторами двух фазных и одного линейного напряжений: UЛ=2UФcos30°
Или UЛ= UФ (3.8)
