
- •1.1.Cформулювати предмет теорії імовірностей?
- •1.2.Дати означення підмножини, скінченної, нескінченної, зліченої, незліченої, упорядкованої та неупорядкованої множин. Навести приклад.
- •1.3.Дати означення об’єднання(або суми), перетину(або добутку) та різниці множин. Навести основні властивості цих операцій та відповідні приклади.
- •1.4.Дати означення розміщення, переставлення та сполучення. Записати формули для обчислення числа цих сполук.Пояснити зміст позначень та навести приклади.
- •1.5. Записати формулу, що пов’язує число переставлень, сполучень та розміщень. Сформулювати правила суми та добутку. Навести приклади.
- •1.7. Дати означення подій: неможливої, достовірної, випадкової, рівноможливих, сумісних, несумісних, попарно несумісних подій. Навести приклади.
- •1.8. Дати означення об’єднання (суми), перетину (добутку) подій, протилежної події, повної групи подій. Навести приклади.
- •1.9. Як випадкова подія виражається через елементарні наслідки випадкового експерименту? Які елементарні наслідки називаються такими, що сприяють появі даної випадкової події? Навести приклади.
- •1.11.Сформулювати геометричне визначення імовірночті, записати відповідну формулу і пояснити зміст позначень. Навести приклади. Назвати основні властивості імовірності.
- •1.12. Дати означення частоти та відносної частоти випадкової події. Сформулювати статистичне визначення імовірності, записати відповідну формулу і пояснити зміст позначень.Навести приклади.
- •1.14. Дати означення незалежності і залежності двох подій, попарної незалежності декількох подій, незалежності у сукупності декількох подій, умовної імовірності події .Навести приклади.
- •1.15. Виписати формулу для обчислення імовірності хоча б однієї з декількох подій, незалежних у сукупності.Пояснити зміст позначень. Навести приклади.
- •1.16. Вивести формули: а) повної імовірності; б) Байеса. Пояснити зміст позначень. Навести приклади застосування цих формул.
- •1.17. Описати схему випробувань Бернулі. Записати формулу Бернулі.Навести приклади її застосування.
- •1.18. С формулювати граничні теореми у схемі випробувань Бернулі. А)Пуассона. Б) Локальну та інтегральну Лапласа.
- •1.19.Записати формули для обчислення в схемі Бернулі: а)імовірності відхилення частоти від імовірності б)найбільш імовірного числа появи подій
- •2.1. Дати означення випадкової величини (в.В.), дискретної (д.В.В.) та неперервної випадкої величини (н.В.В.). Навести приклади.
- •2.2. Дати означення закону та багатокутника розподілу ймовірностей д.В.В. Навести приклади.
- •2.3. Дати означення інтегральної та диференціальної функції розподілу н.В.В. Довести їх основні властивості. Навести приклади з побудовою відповідних графіків.
- •2.5. Пояснити, що характеризують: а) математичне сподівання; б) дисперсія та середнє квадратичне відхилення; в) асиметрія; г) ексцес; д) мода; е) медіана.
- •2.6. Сформулювати основні властивості математичного сподівання і дисперсії.
- •2.8.Записати основні закони розподілу н.В.В.: а) рівномірний; б) показниковий; в) нормальний. Пояснити зміст позначень. Навести приклади д.В.В., розподілених за цими законами.
- •2.9.Пояснити зміст терміну «закон великих чисел». Сформулювати нерівність а. Чебишова у всіх формах. Навести приклади її застосування.
- •2.10.Сформулювати основні теореми закону великих чисел: а) Бернуллі; б) Чебишова. Пояснити значення цих теорем для практики
- •2.11 Сформ. Центр. Гран. Теор. У формі Леві –Ліндеберга
- •2.12.Дати означення:а) системи випадкових величин (с.В.В.); б) закону розподілу дискретної двовимірної випадкової величини (д.Д.В.В.). Навести приклади.
- •2.13.Дати означення функціїї розподілу імовірностей с.В.В. Сформулювати її основні властивості та геометричний зміст.
- •2.14.Дати означення функції щільності розподілу імовірностей с.В.В. Сформулювати її основні властивості та геометричний зміст.
- •2.16. Дати означення залежності та незалежності випадкових величин. Сформулювати і довести теореми про необхідну достатню умови незалежності в.В.,, що входять у с.В.В.
- •2.17.Вивести формули для знаходження:а)законів розподілу;б)умовних законів розподілу складових дискретної с.В.В. Навести відповідні означення та функції.
- •2.20. Навести основні властивості кореляційного моменту μxy та коефіцієнту кореляції rxy
- •2.21. Дати означення корельованості (некорельованості) двох в.В. Пояснити різнцю і зв’язок між корельованістю (некорельованістю) і залежністю двох в.В.
- •2.22. Вивести рівняння лінійної середньоквадратичної регресії y на х(х на y). Пояснити зміст позначень.Дати означення коефіцієнту регресії , залишкової дисперсії та пояснити, що вони характеризують.
- •2.23. Сформулювати теорему про корельованість складових нормально розподіленої двовимірної в.В.
- •2.25. Записати формули для обчислення математичного сподівання тта дисперсії функцій д.В.В. Та н.В.В.Навести приклади.
- •2.26. Пояснити, як будуються випадкові величини, що мають розподіл:а) Пірсона х2;б) Стьюдента;в) Фішера
- •3.1. Сформулювати предмет математичної статистикита її основні задачі.
- •3.2.Дати означення:а) генеральної та вибіркової сукупностей;б)обсягу вибірки;в) повторної і без повторної, репрезентативної вибірки
- •3.3.Дати означення статистичної (емпіричної) ф-ї розподілу та сформулювати її основні властивості. Навести приклади побудови емпіричної функції розподілу та її графіки.
- •3.4. Дати означення кумулятивних частоти та відносної частоти.Пояснити їх статистичний зміст.
- •3.5.Дати означення полігону, гістограми.Навести приклади їх побудови.
- •3.6.Дати означення:а) точкової статистичної оцінки параметра розподілу генеральної сукупності;б) незаміщеної, ефективної, обгрунтованої вичерпної оцінки.
- •3.7.Означення генеральної та вибіркової середньої, довести...
- •3.8.Означення генеральних та вибіркових дисперсій та середнього квадр відхилення, формули
- •3.9.Дати озн вибіркових: Моди, медіани , початкового моменту, центрального моменту, асиметрії, ексцесу.
- •3.10.Дати означення: а)інтегральної оцінки параметра генеральної сукупності, її точності та надійності б)надійного інтервалу
- •3.12 Сформ. Та обґрунтувати взаємозалежність між точністю інтервальної оцінки
- •3.14.Дати означення емпіричної та теоретичної частот, формули для обч теоретичних частот розподілів : Пуассона, нормальної та генеральної сукупності
- •3.15.Дати озн функціональної, статистичної, кореляційної залежності, умовного середнього, вибіркових рівняння та лінії регресії.
- •3.16.Вивести формули для обч параметрів вибіркового рівн лінійної регресії : а) за не згрупованими даними, б) за згрупованими
- •3.17.Записати формулу для обч вибіркової кореляції кінців надійного інтервалу для інтерн. Оцінки коеф кореляції нормально розподіленої ген сукупності
- •3.18.Дати означення статистичної гіпотези, назвати основні види, означення нульової, альтернативної гіпотез, помилки 1 і 2 роду
- •3.19.Означення статистичного критерію, спостереженого та теор значенню критерію, Крит обл., обл. Прийняття гіпотези, критичних точок, однобічної та двобічної Крит обл., лівоб та правоб крит обл
- •3.20.Дати означення рівня значущості та потужності статистичного критерію. Пояснити способи знаходження однобічної та двобічної критичних областей.
- •3.21 Навести приклади перевірки гіпотез про..
- •1.1.Cформулювати предмет теорії імовірностей?
- •1.2.Дати означення підмножини, скінченної, нескінченної, зліченої, незліченої, упорядкованої та неупорядкованої множин. Навести приклад.
- •1.3.Дати означення об’єднання(або суми), перетину(або добутку) та різниці множин. Навести основні властивості цих операцій та відповідні приклади.
2.5. Пояснити, що характеризують: а) математичне сподівання; б) дисперсія та середнє квадратичне відхилення; в) асиметрія; г) ексцес; д) мода; е) медіана.
Математичне сподівання в.в. Х характеризує середнє значення Х із врахуванням ймовірностей його можливих значень. В практичній діяльності під математичним сподівання розуміють центр розподілу в.в.
Дисперсія характеризує розсіювання можливих значень Х відносно центру розподілу в.в.
Середнє квадратичне відхилення випадкової величини характеризує величину розсіювання в.в. в розмірності цієї величини.
Асиметрія характеризує симетричний чи асиметричний розподіл та правосторонній чи лівосторонній.
Ексцес характеризує плосковерхість чи гостроверхість розподілу, порівняно з нормативним розподілом з тим же значенням дисперсії .
При графічному способі зображення закону розподілу в.в., значення в.в. імовірність якого найбільша, називають модою (М0).
Медіана (Ме)— це середина відрізку між математичним сподіванням та модою.
2.6. Сформулювати основні властивості математичного сподівання і дисперсії.
Математичне сподівання постійної величини дорівнює самій постійній М(С) = С.
Постійний множник можна виносити за знак математичного сподівання М(СХ)=С*М(Х).
Математичне сподівання добутку декількох взаємно незалежних дискретних випадкових величин дорівнює добутку їх математичних сподівань, тобто М(Х1*Х2*…*Хn) = М(Х1)*М(Х2)*…*М(Хn).
Математичне сподівання суми випадкових величин дорівнює сумі їх математичних сподівань, тобто М(Х1+Х2+…+Хn ) = М(Х1)+М(Х2)+…+М(Хn)
Основні властивості дисперсії.
1)Дисперсія будь-якої ДВВ Х невід’ємна
Дійсно, (Х – М(Х))2 невід’ємна, тому згідно означення математичного сподівання та властивостей pk , k =1,2, … , n , D(X) також невід’ємна.
2)Дисперсія постійної величини С дорівнює нулеві
D(X) = 0
Дійсно, якщо Х=С, то М(С)= С, тому С – М(С) = 0
3)Постійний множник С можна виносити за знак дисперсії, при цьому постійний множник треба піднести у квадрат
D(СX) = С2 D(X).
Дійсно, СХ – М(СХ) = С (Х – М(Х)), тому
(СХ – М(СХ))2 = С2 (Х – М(Х))2.
Постійний множник С2 можна виносити за знак математичного сподівання, тому з формули D(X) = М((Х – М(Х))2) випливає потрібна рівність D(СX) = С2 D(X).
4) Дисперсія ДВВ Х дорівнює різниці між математичним сподіванням квадрата випадкової величини Х та квадрата її математичного сподівання
D(X) = М(Х2) – (М(Х))2.
Дійсно, D(X) = М((Х – М(Х))2) = М(Х2 – 2ХМ(Х) + М2(Х)) = М(Х2) – 2М2(Х) + М2(Х) = М(Х2) - М2(Х).
5) дисперсія
алгебраїчної суми ДВВ Х та Y дорівнює
сумі їх дисперсій
.
2.7.Записати основні закони розподілу д.в.в.: а) біноміальний ; б)Пуассона; в)геометричний. Пояснити зміст позначень. Навести приклади д.в.в., розподілених за цими законами.
1. Біноміальний
2.Пуассона
3.Геометричний
.
4. Гіпергеометричний
Біноміальний закон розподілу.
Йм-ті в цьому законі визначаються за формулою P(X=m)=Cmnpm(1-p)n-m, m=0,1,2,…,n. Закон справджується для схеми незалежних повторних випробувань, у кожному з яких подія А настає з йм-тю р. Частота настання події А має біноміальний закон розподілу. Числові х-ки закону: MX=np; DX=np(1-p).
Випадкова величина X називається розподіленою за законом Пуассона (або, що те саме, має пуассонівський розподіл) з параметром λ, якщо для неї виконується рівність:
Пуассонівський розподіл справедливий для подій, які мають малу ймовірність чи трапляються нечасто. Ним, наприклад, можна описати ймовірність того, що футболіст заб'є гол у конкретному матчі. Іноді футболіст забиває один гол, рідше два, ще рідше робить хет-трик, Пеле одного разу забив вісім. Найчастіше футболіст не забиває жодного.
Ймовірність забити k голів за гру визначається параметром λ, що є середньою кількістю голів, які забиває футболіст. Якщо λ велике число, то ймовірність має досягати максимуму при якомусь k. В такому випадку мова йде радше про баскетболіста, який може набирати, наприклад, 22 очка за гру в середньому. Тоді ймовірність набрати 2 очка буде малою. Ймовірність набрати 42 очка теж буде малою, а максимум ймовірності буде в районі саме 22 очок. Геометричний закон розподілу Р(Х=m)=pq , m=1,2,3… Геометр закон розп має частота настання події у схемі незалежних повторних випробувань, якщо вони проводяться до першого настання події. У ф-лі: р– йм-сть настання події в кожному випробу-ванні. Геометричний закон розподілу застосовуєть-ся у задачах статистичного контролю якості і теорії надійності. Числові х-ки: MX=1/p; DX=(1-p)/p2.