
- •1.1.Cформулювати предмет теорії імовірностей?
- •1.2.Дати означення підмножини, скінченної, нескінченної, зліченої, незліченої, упорядкованої та неупорядкованої множин. Навести приклад.
- •1.3.Дати означення об’єднання(або суми), перетину(або добутку) та різниці множин. Навести основні властивості цих операцій та відповідні приклади.
- •1.4.Дати означення розміщення, переставлення та сполучення. Записати формули для обчислення числа цих сполук.Пояснити зміст позначень та навести приклади.
- •1.5. Записати формулу, що пов’язує число переставлень, сполучень та розміщень. Сформулювати правила суми та добутку. Навести приклади.
- •1.7. Дати означення подій: неможливої, достовірної, випадкової, рівноможливих, сумісних, несумісних, попарно несумісних подій. Навести приклади.
- •1.8. Дати означення об’єднання (суми), перетину (добутку) подій, протилежної події, повної групи подій. Навести приклади.
- •1.9. Як випадкова подія виражається через елементарні наслідки випадкового експерименту? Які елементарні наслідки називаються такими, що сприяють появі даної випадкової події? Навести приклади.
- •1.11.Сформулювати геометричне визначення імовірночті, записати відповідну формулу і пояснити зміст позначень. Навести приклади. Назвати основні властивості імовірності.
- •1.12. Дати означення частоти та відносної частоти випадкової події. Сформулювати статистичне визначення імовірності, записати відповідну формулу і пояснити зміст позначень.Навести приклади.
- •1.14. Дати означення незалежності і залежності двох подій, попарної незалежності декількох подій, незалежності у сукупності декількох подій, умовної імовірності події .Навести приклади.
- •1.15. Виписати формулу для обчислення імовірності хоча б однієї з декількох подій, незалежних у сукупності.Пояснити зміст позначень. Навести приклади.
- •1.16. Вивести формули: а) повної імовірності; б) Байеса. Пояснити зміст позначень. Навести приклади застосування цих формул.
- •1.17. Описати схему випробувань Бернулі. Записати формулу Бернулі.Навести приклади її застосування.
- •1.18. С формулювати граничні теореми у схемі випробувань Бернулі. А)Пуассона. Б) Локальну та інтегральну Лапласа.
- •1.19.Записати формули для обчислення в схемі Бернулі: а)імовірності відхилення частоти від імовірності б)найбільш імовірного числа появи подій
- •2.1. Дати означення випадкової величини (в.В.), дискретної (д.В.В.) та неперервної випадкої величини (н.В.В.). Навести приклади.
- •2.2. Дати означення закону та багатокутника розподілу ймовірностей д.В.В. Навести приклади.
- •2.3. Дати означення інтегральної та диференціальної функції розподілу н.В.В. Довести їх основні властивості. Навести приклади з побудовою відповідних графіків.
- •2.5. Пояснити, що характеризують: а) математичне сподівання; б) дисперсія та середнє квадратичне відхилення; в) асиметрія; г) ексцес; д) мода; е) медіана.
- •2.6. Сформулювати основні властивості математичного сподівання і дисперсії.
- •2.8.Записати основні закони розподілу н.В.В.: а) рівномірний; б) показниковий; в) нормальний. Пояснити зміст позначень. Навести приклади д.В.В., розподілених за цими законами.
- •2.9.Пояснити зміст терміну «закон великих чисел». Сформулювати нерівність а. Чебишова у всіх формах. Навести приклади її застосування.
- •2.10.Сформулювати основні теореми закону великих чисел: а) Бернуллі; б) Чебишова. Пояснити значення цих теорем для практики
- •2.11 Сформ. Центр. Гран. Теор. У формі Леві –Ліндеберга
- •2.12.Дати означення:а) системи випадкових величин (с.В.В.); б) закону розподілу дискретної двовимірної випадкової величини (д.Д.В.В.). Навести приклади.
- •2.13.Дати означення функціїї розподілу імовірностей с.В.В. Сформулювати її основні властивості та геометричний зміст.
- •2.14.Дати означення функції щільності розподілу імовірностей с.В.В. Сформулювати її основні властивості та геометричний зміст.
- •2.16. Дати означення залежності та незалежності випадкових величин. Сформулювати і довести теореми про необхідну достатню умови незалежності в.В.,, що входять у с.В.В.
- •2.17.Вивести формули для знаходження:а)законів розподілу;б)умовних законів розподілу складових дискретної с.В.В. Навести відповідні означення та функції.
- •2.20. Навести основні властивості кореляційного моменту μxy та коефіцієнту кореляції rxy
- •2.21. Дати означення корельованості (некорельованості) двох в.В. Пояснити різнцю і зв’язок між корельованістю (некорельованістю) і залежністю двох в.В.
- •2.22. Вивести рівняння лінійної середньоквадратичної регресії y на х(х на y). Пояснити зміст позначень.Дати означення коефіцієнту регресії , залишкової дисперсії та пояснити, що вони характеризують.
- •2.23. Сформулювати теорему про корельованість складових нормально розподіленої двовимірної в.В.
- •2.25. Записати формули для обчислення математичного сподівання тта дисперсії функцій д.В.В. Та н.В.В.Навести приклади.
- •2.26. Пояснити, як будуються випадкові величини, що мають розподіл:а) Пірсона х2;б) Стьюдента;в) Фішера
- •3.1. Сформулювати предмет математичної статистикита її основні задачі.
- •3.2.Дати означення:а) генеральної та вибіркової сукупностей;б)обсягу вибірки;в) повторної і без повторної, репрезентативної вибірки
- •3.3.Дати означення статистичної (емпіричної) ф-ї розподілу та сформулювати її основні властивості. Навести приклади побудови емпіричної функції розподілу та її графіки.
- •3.4. Дати означення кумулятивних частоти та відносної частоти.Пояснити їх статистичний зміст.
- •3.5.Дати означення полігону, гістограми.Навести приклади їх побудови.
- •3.6.Дати означення:а) точкової статистичної оцінки параметра розподілу генеральної сукупності;б) незаміщеної, ефективної, обгрунтованої вичерпної оцінки.
- •3.7.Означення генеральної та вибіркової середньої, довести...
- •3.8.Означення генеральних та вибіркових дисперсій та середнього квадр відхилення, формули
- •3.9.Дати озн вибіркових: Моди, медіани , початкового моменту, центрального моменту, асиметрії, ексцесу.
- •3.10.Дати означення: а)інтегральної оцінки параметра генеральної сукупності, її точності та надійності б)надійного інтервалу
- •3.12 Сформ. Та обґрунтувати взаємозалежність між точністю інтервальної оцінки
- •3.14.Дати означення емпіричної та теоретичної частот, формули для обч теоретичних частот розподілів : Пуассона, нормальної та генеральної сукупності
- •3.15.Дати озн функціональної, статистичної, кореляційної залежності, умовного середнього, вибіркових рівняння та лінії регресії.
- •3.16.Вивести формули для обч параметрів вибіркового рівн лінійної регресії : а) за не згрупованими даними, б) за згрупованими
- •3.17.Записати формулу для обч вибіркової кореляції кінців надійного інтервалу для інтерн. Оцінки коеф кореляції нормально розподіленої ген сукупності
- •3.18.Дати означення статистичної гіпотези, назвати основні види, означення нульової, альтернативної гіпотез, помилки 1 і 2 роду
- •3.19.Означення статистичного критерію, спостереженого та теор значенню критерію, Крит обл., обл. Прийняття гіпотези, критичних точок, однобічної та двобічної Крит обл., лівоб та правоб крит обл
- •3.20.Дати означення рівня значущості та потужності статистичного критерію. Пояснити способи знаходження однобічної та двобічної критичних областей.
- •3.21 Навести приклади перевірки гіпотез про..
- •1.1.Cформулювати предмет теорії імовірностей?
- •1.2.Дати означення підмножини, скінченної, нескінченної, зліченої, незліченої, упорядкованої та неупорядкованої множин. Навести приклад.
- •1.3.Дати означення об’єднання(або суми), перетину(або добутку) та різниці множин. Навести основні властивості цих операцій та відповідні приклади.
1.18. С формулювати граничні теореми у схемі випробувань Бернулі. А)Пуассона. Б) Локальну та інтегральну Лапласа.
Теорема Пуасона
Нехай
проводиться n випробувань, кожному з
яких ймовірність настання події А є
сталою величиною. Якщо кількість
випробувань прямує до нескінченності,
а ймовірність настання події А
,
то ймовірність того, що Р
(k)
,де
Зауваження
Якщо кількість випробувань n є дуже велике число n>1000, а р є дуже мале p<0,01, то
Р
(к)
Задача
Перевозиться 1000 пляшок від А до В. Імовірність того, що будь-яка пляшка розібьється =0,001. Знайти Р того, що під час перевезення розіб’ється тільки одна пляшка.
Р
(1)
Локальна теорема Лапласа(Муавра-Лапласса)
Якщо виконуються умови схеми випробувань Бернуллі:
-проводиться n випробувань,кожному з яких є стала і=р.
-при достатньо великих n ймовірність того,що n випробувань подія А з`явиться рівно к-раз.
Р
(k)
*
(х),
де х=
,
а
(х)=
*е
-називається локальною функцією
Лапласса.(
-парна)
Рівність є тим точнішою,чим більше випробувань n проведено.
Ф-я (х) має такі властивості:
1.Якщо х=0,то (0)= =0,3989( 0,4).
2.Якщо
х
,то
ф-я
(х)
.
3.Ф-я є парною ф-ю (-х)= (х)
Ф-я (х) є табульованою ф-єю,тобто значення ф-ї у певних точках міститься у відповідних таблицях.
Приклад.
У пологовому будинку нараховано 100 дітей,яка ймовірність того,що серед цих 100 дітей 60 хлопців. Якщо Р(А)=0,55
n=100.k=60.А= «народження хлопчика».Р=0,55.q=0,45
Р
(60)
Х=
=
=1
(1)
Зауваження:
Таке правило локальна теорема Лаппаса
використовується якщо кількість
випробувань n>50, а ймовірність р
0,
р
1.
Інтегральна теорема Лапласса
Якщо провести n випробувань і виконуються основні умови схеми випробуваня Бернуллі, то при достатньо великих n\
Р
може бути знайдено за наступною приблизною
рівністю
Р
Ф(х
)-Ф(х
),
де х
,
х
обчислюється так:
х
=
,
х
=
,
Ф(х)=
Властивості функції формули
Якщо х=0, то Ф(0)=0
х
: Ф(Х) 0,5
x>5:Ф(Х) 0,5
3.Ф(-х)=-Ф(х)
Ф-я Ф є табульованою і значення цієї ф-ї у певних точках знаходиться у відповідних таблицях(табл. 2)
1.19.Записати формули для обчислення в схемі Бернулі: а)імовірності відхилення частоти від імовірності б)найбільш імовірного числа появи подій
Нехай проводиться випробовування за схемою Бернулі і виконуються умови теореми лапласа про значення р та n треба знайти хочаб наближено імовірність того,Що відхилення (частість)(відносна частота)m/n від постійної імовірності р не перевищує заданого числа ε>0. за допомогою нерівності|m/n-p|<= ε а також користуючись інтегральною теоремою лапласа отримаємо p={|k/n-p|< ε }= Ф(-ε√n/pq)+ Ф(-ε√n/pq)=2 Ф(-ε√n/pq). За формулою Бернулі: Pn(k0)=n!/(k0(n-k0))!*pk0q(n-k0)
1)якщо число(n+1)p натуральне, то згачень 2. а)k0'=(n+1)p або б) k0'=(n+1)p-1
2)Припустимо (n+1) p-дробове число, тоді k0=цілій частині цього числа k0=[ (n+1)p]
Приклад: Припустимо що частина курсантыв що вчаться без 3-70%, р=0,7-курсант без 3.Знайти найбыльшу ымовырнысть Р(А) курсантыв що вчаться без 3. n=250. (n+1)p=251-0,7
K0=[251*0.7]=175