
- •1.1.Cформулювати предмет теорії імовірностей?
- •1.2.Дати означення підмножини, скінченної, нескінченної, зліченої, незліченої, упорядкованої та неупорядкованої множин. Навести приклад.
- •1.3.Дати означення об’єднання(або суми), перетину(або добутку) та різниці множин. Навести основні властивості цих операцій та відповідні приклади.
- •1.4.Дати означення розміщення, переставлення та сполучення. Записати формули для обчислення числа цих сполук.Пояснити зміст позначень та навести приклади.
- •1.5. Записати формулу, що пов’язує число переставлень, сполучень та розміщень. Сформулювати правила суми та добутку. Навести приклади.
- •1.7. Дати означення подій: неможливої, достовірної, випадкової, рівноможливих, сумісних, несумісних, попарно несумісних подій. Навести приклади.
- •1.8. Дати означення об’єднання (суми), перетину (добутку) подій, протилежної події, повної групи подій. Навести приклади.
- •1.9. Як випадкова подія виражається через елементарні наслідки випадкового експерименту? Які елементарні наслідки називаються такими, що сприяють появі даної випадкової події? Навести приклади.
- •1.11.Сформулювати геометричне визначення імовірночті, записати відповідну формулу і пояснити зміст позначень. Навести приклади. Назвати основні властивості імовірності.
- •1.12. Дати означення частоти та відносної частоти випадкової події. Сформулювати статистичне визначення імовірності, записати відповідну формулу і пояснити зміст позначень.Навести приклади.
- •1.14. Дати означення незалежності і залежності двох подій, попарної незалежності декількох подій, незалежності у сукупності декількох подій, умовної імовірності події .Навести приклади.
- •1.15. Виписати формулу для обчислення імовірності хоча б однієї з декількох подій, незалежних у сукупності.Пояснити зміст позначень. Навести приклади.
- •1.16. Вивести формули: а) повної імовірності; б) Байеса. Пояснити зміст позначень. Навести приклади застосування цих формул.
- •1.17. Описати схему випробувань Бернулі. Записати формулу Бернулі.Навести приклади її застосування.
- •1.18. С формулювати граничні теореми у схемі випробувань Бернулі. А)Пуассона. Б) Локальну та інтегральну Лапласа.
- •1.19.Записати формули для обчислення в схемі Бернулі: а)імовірності відхилення частоти від імовірності б)найбільш імовірного числа появи подій
- •2.1. Дати означення випадкової величини (в.В.), дискретної (д.В.В.) та неперервної випадкої величини (н.В.В.). Навести приклади.
- •2.2. Дати означення закону та багатокутника розподілу ймовірностей д.В.В. Навести приклади.
- •2.3. Дати означення інтегральної та диференціальної функції розподілу н.В.В. Довести їх основні властивості. Навести приклади з побудовою відповідних графіків.
- •2.5. Пояснити, що характеризують: а) математичне сподівання; б) дисперсія та середнє квадратичне відхилення; в) асиметрія; г) ексцес; д) мода; е) медіана.
- •2.6. Сформулювати основні властивості математичного сподівання і дисперсії.
- •2.8.Записати основні закони розподілу н.В.В.: а) рівномірний; б) показниковий; в) нормальний. Пояснити зміст позначень. Навести приклади д.В.В., розподілених за цими законами.
- •2.9.Пояснити зміст терміну «закон великих чисел». Сформулювати нерівність а. Чебишова у всіх формах. Навести приклади її застосування.
- •2.10.Сформулювати основні теореми закону великих чисел: а) Бернуллі; б) Чебишова. Пояснити значення цих теорем для практики
- •2.11 Сформ. Центр. Гран. Теор. У формі Леві –Ліндеберга
- •2.12.Дати означення:а) системи випадкових величин (с.В.В.); б) закону розподілу дискретної двовимірної випадкової величини (д.Д.В.В.). Навести приклади.
- •2.13.Дати означення функціїї розподілу імовірностей с.В.В. Сформулювати її основні властивості та геометричний зміст.
- •2.14.Дати означення функції щільності розподілу імовірностей с.В.В. Сформулювати її основні властивості та геометричний зміст.
- •2.16. Дати означення залежності та незалежності випадкових величин. Сформулювати і довести теореми про необхідну достатню умови незалежності в.В.,, що входять у с.В.В.
- •2.17.Вивести формули для знаходження:а)законів розподілу;б)умовних законів розподілу складових дискретної с.В.В. Навести відповідні означення та функції.
- •2.20. Навести основні властивості кореляційного моменту μxy та коефіцієнту кореляції rxy
- •2.21. Дати означення корельованості (некорельованості) двох в.В. Пояснити різнцю і зв’язок між корельованістю (некорельованістю) і залежністю двох в.В.
- •2.22. Вивести рівняння лінійної середньоквадратичної регресії y на х(х на y). Пояснити зміст позначень.Дати означення коефіцієнту регресії , залишкової дисперсії та пояснити, що вони характеризують.
- •2.23. Сформулювати теорему про корельованість складових нормально розподіленої двовимірної в.В.
- •2.25. Записати формули для обчислення математичного сподівання тта дисперсії функцій д.В.В. Та н.В.В.Навести приклади.
- •2.26. Пояснити, як будуються випадкові величини, що мають розподіл:а) Пірсона х2;б) Стьюдента;в) Фішера
- •3.1. Сформулювати предмет математичної статистикита її основні задачі.
- •3.2.Дати означення:а) генеральної та вибіркової сукупностей;б)обсягу вибірки;в) повторної і без повторної, репрезентативної вибірки
- •3.3.Дати означення статистичної (емпіричної) ф-ї розподілу та сформулювати її основні властивості. Навести приклади побудови емпіричної функції розподілу та її графіки.
- •3.4. Дати означення кумулятивних частоти та відносної частоти.Пояснити їх статистичний зміст.
- •3.5.Дати означення полігону, гістограми.Навести приклади їх побудови.
- •3.6.Дати означення:а) точкової статистичної оцінки параметра розподілу генеральної сукупності;б) незаміщеної, ефективної, обгрунтованої вичерпної оцінки.
- •3.7.Означення генеральної та вибіркової середньої, довести...
- •3.8.Означення генеральних та вибіркових дисперсій та середнього квадр відхилення, формули
- •3.9.Дати озн вибіркових: Моди, медіани , початкового моменту, центрального моменту, асиметрії, ексцесу.
- •3.10.Дати означення: а)інтегральної оцінки параметра генеральної сукупності, її точності та надійності б)надійного інтервалу
- •3.12 Сформ. Та обґрунтувати взаємозалежність між точністю інтервальної оцінки
- •3.14.Дати означення емпіричної та теоретичної частот, формули для обч теоретичних частот розподілів : Пуассона, нормальної та генеральної сукупності
- •3.15.Дати озн функціональної, статистичної, кореляційної залежності, умовного середнього, вибіркових рівняння та лінії регресії.
- •3.16.Вивести формули для обч параметрів вибіркового рівн лінійної регресії : а) за не згрупованими даними, б) за згрупованими
- •3.17.Записати формулу для обч вибіркової кореляції кінців надійного інтервалу для інтерн. Оцінки коеф кореляції нормально розподіленої ген сукупності
- •3.18.Дати означення статистичної гіпотези, назвати основні види, означення нульової, альтернативної гіпотез, помилки 1 і 2 роду
- •3.19.Означення статистичного критерію, спостереженого та теор значенню критерію, Крит обл., обл. Прийняття гіпотези, критичних точок, однобічної та двобічної Крит обл., лівоб та правоб крит обл
- •3.20.Дати означення рівня значущості та потужності статистичного критерію. Пояснити способи знаходження однобічної та двобічної критичних областей.
- •3.21 Навести приклади перевірки гіпотез про..
- •1.1.Cформулювати предмет теорії імовірностей?
- •1.2.Дати означення підмножини, скінченної, нескінченної, зліченої, незліченої, упорядкованої та неупорядкованої множин. Навести приклад.
- •1.3.Дати означення об’єднання(або суми), перетину(або добутку) та різниці множин. Навести основні властивості цих операцій та відповідні приклади.
1.14. Дати означення незалежності і залежності двох подій, попарної незалежності декількох подій, незалежності у сукупності декількох подій, умовної імовірності події .Навести приклади.
Подія B – незалежна від події А, якщо поява події А не змінює імовірності події В, тобто якщо умовна імовірність події В дорівнює його безумовної ймовірності:
PA(B) = P(B). Так само PB(A) = P(A). Дві події наз-ся незалежними, якщо імовірність їх суміщення дорівнює добутку ймовірностей цих подій, в іншому разі події називають залежними.
Декілька подій наз-ють попарно незалежними, якщо кожні дві з них незалежні.
Декілька подій називають незалежними в сукупності (або просто незалежними), якщо незалежні кожні дві із них і незалежна кожна подія і всі можливі добутки інших.
Умовною імовірністю PA(B) називають імовірність події В, обчислену за умови, що подія А уже наступила.
1.15. Виписати формулу для обчислення імовірності хоча б однієї з декількох подій, незалежних у сукупності.Пояснити зміст позначень. Навести приклади.
Події називаються незалежними якщо імовірність появи однієї не залежить від появи або не появи іншої. P=a/n-імовірність певної події,а-кількісь наслідків єксперименту, коли відбвається певна подія. N-загальна кількість наслідків експерименту.Тож імовірність появи хоча б одієї події буде Р=Р1+Р2...+Рn,де Р1,Р2, Рn імовірності появи незалежних подій. Приклад:кидання двох монет, поява орла чи решки внаслідок киданя однієї монети не залежить від результату кидання другої монети. Потрібно додати що якщо події незалежні то умовна імовірність події дорівнює її безумовнії імовірності.
1.16. Вивести формули: а) повної імовірності; б) Байеса. Пояснити зміст позначень. Навести приклади застосування цих формул.
Імовірність
події А,
яка може настати лише при умові появи
однієї з несумісних подій В1,В2,В3..Вn,
які утворюють повну групу, дорівнює
сумі добутків імовірностей кожної з
цих подій на відповідну умовну імовірність
події А. P(A)=P(B1)*PB1(A)+P(B2)*PB2(A)+
...P(Bn)PBn(A).
Це формула повної імовірності. P(A)-імовірність події А, P(B1)-імовірність події В1, PB1(A)-умовна імовірність події А при виконанні події В1.
Приклад: В першій коробці 20 радіоламп, з них 18 стандартних, в другій – 10 ламп, з них 9 стандартних. З другої коробки навмання взята лампа і перекладена в першу.
Формула Байєса:
PA(B1)=(P(Bi)*PBi(A))/(P(B1)*PB1(A)+P(B2)*PB2(A)+…+P(Bn)*PBn(A)).Пояснення букв як і для повної імовірності. Формули Байєса дозволяють переоцінити імовірність гіпотез, після того, як стає відомим результат випробовування, в результаті якого з’явилася подія А.
Приклад: Деталі потрапляють на перевірку до одного з двох контролерів. Імовірність, що попаде до першого-0,6, що до другого-0,4. Імовірність того що деталь буде признана стандартною першим контролером-0,95. Другим-0,93. Деталь була признана стандартною. Яка імовірність того, що деталь перевірив перший контролер?
1.17. Описати схему випробувань Бернулі. Записати формулу Бернулі.Навести приклади її застосування.
Незалежні
випробування. Нехай проводяться n
випробувань, у кожному з яких подія А
може відбутись або не відбутись. Якщо
ця ймовірність у кожному випробуванні
не залежить від того, відбулась вона в
інших випробуваннях чи ні, то такі
випробування називаються незалежними
щодо події А. Згідно з означенням
випробування також незалежні, якщо в
кожному з них імовірність настання
події А однакова. Імовірність того, що
подія А відбудеться в кожному з незалежних
випробувань, позначають
а ймовірність настання протилежної
події
Для
розв’язування задач на повторні
незалежні випробування застосовують
такі формули і теореми.Формула Бернуллі.
Імовірність того, що в n незалежних
випробуваннях, у кожному з яких імовірність
Р(А) = р, подія А відбудеться m раз, подається
так:
Формула застосовується, якщо n<=10.
Приклад
Монета кидається 3 рази, Р того, що «герб» випаде один раз
n=3
А-«випадання герба»
Р(А)=р=
Р(
)=
=q
K=1
А
+
А
+
А=
Р(А)* Р(
)*Р(
)+Р(
)*Р(А)*Р(
)+Р(
)*Р(
)*Р(А)=pqq+qpq+qqp=3pq
=
Р
(1)=
C
*(0,5)
*(0,5)