
- •1.1.Cформулювати предмет теорії імовірностей?
- •1.2.Дати означення підмножини, скінченної, нескінченної, зліченої, незліченої, упорядкованої та неупорядкованої множин. Навести приклад.
- •1.3.Дати означення об’єднання(або суми), перетину(або добутку) та різниці множин. Навести основні властивості цих операцій та відповідні приклади.
- •1.4.Дати означення розміщення, переставлення та сполучення. Записати формули для обчислення числа цих сполук.Пояснити зміст позначень та навести приклади.
- •1.5. Записати формулу, що пов’язує число переставлень, сполучень та розміщень. Сформулювати правила суми та добутку. Навести приклади.
- •1.7. Дати означення подій: неможливої, достовірної, випадкової, рівноможливих, сумісних, несумісних, попарно несумісних подій. Навести приклади.
- •1.8. Дати означення об’єднання (суми), перетину (добутку) подій, протилежної події, повної групи подій. Навести приклади.
- •1.9. Як випадкова подія виражається через елементарні наслідки випадкового експерименту? Які елементарні наслідки називаються такими, що сприяють появі даної випадкової події? Навести приклади.
- •1.11.Сформулювати геометричне визначення імовірночті, записати відповідну формулу і пояснити зміст позначень. Навести приклади. Назвати основні властивості імовірності.
- •1.12. Дати означення частоти та відносної частоти випадкової події. Сформулювати статистичне визначення імовірності, записати відповідну формулу і пояснити зміст позначень.Навести приклади.
- •1.14. Дати означення незалежності і залежності двох подій, попарної незалежності декількох подій, незалежності у сукупності декількох подій, умовної імовірності події .Навести приклади.
- •1.15. Виписати формулу для обчислення імовірності хоча б однієї з декількох подій, незалежних у сукупності.Пояснити зміст позначень. Навести приклади.
- •1.16. Вивести формули: а) повної імовірності; б) Байеса. Пояснити зміст позначень. Навести приклади застосування цих формул.
- •1.17. Описати схему випробувань Бернулі. Записати формулу Бернулі.Навести приклади її застосування.
- •1.18. С формулювати граничні теореми у схемі випробувань Бернулі. А)Пуассона. Б) Локальну та інтегральну Лапласа.
- •1.19.Записати формули для обчислення в схемі Бернулі: а)імовірності відхилення частоти від імовірності б)найбільш імовірного числа появи подій
- •2.1. Дати означення випадкової величини (в.В.), дискретної (д.В.В.) та неперервної випадкої величини (н.В.В.). Навести приклади.
- •2.2. Дати означення закону та багатокутника розподілу ймовірностей д.В.В. Навести приклади.
- •2.3. Дати означення інтегральної та диференціальної функції розподілу н.В.В. Довести їх основні властивості. Навести приклади з побудовою відповідних графіків.
- •2.5. Пояснити, що характеризують: а) математичне сподівання; б) дисперсія та середнє квадратичне відхилення; в) асиметрія; г) ексцес; д) мода; е) медіана.
- •2.6. Сформулювати основні властивості математичного сподівання і дисперсії.
- •2.8.Записати основні закони розподілу н.В.В.: а) рівномірний; б) показниковий; в) нормальний. Пояснити зміст позначень. Навести приклади д.В.В., розподілених за цими законами.
- •2.9.Пояснити зміст терміну «закон великих чисел». Сформулювати нерівність а. Чебишова у всіх формах. Навести приклади її застосування.
- •2.10.Сформулювати основні теореми закону великих чисел: а) Бернуллі; б) Чебишова. Пояснити значення цих теорем для практики
- •2.11 Сформ. Центр. Гран. Теор. У формі Леві –Ліндеберга
- •2.12.Дати означення:а) системи випадкових величин (с.В.В.); б) закону розподілу дискретної двовимірної випадкової величини (д.Д.В.В.). Навести приклади.
- •2.13.Дати означення функціїї розподілу імовірностей с.В.В. Сформулювати її основні властивості та геометричний зміст.
- •2.14.Дати означення функції щільності розподілу імовірностей с.В.В. Сформулювати її основні властивості та геометричний зміст.
- •2.16. Дати означення залежності та незалежності випадкових величин. Сформулювати і довести теореми про необхідну достатню умови незалежності в.В.,, що входять у с.В.В.
- •2.17.Вивести формули для знаходження:а)законів розподілу;б)умовних законів розподілу складових дискретної с.В.В. Навести відповідні означення та функції.
- •2.20. Навести основні властивості кореляційного моменту μxy та коефіцієнту кореляції rxy
- •2.21. Дати означення корельованості (некорельованості) двох в.В. Пояснити різнцю і зв’язок між корельованістю (некорельованістю) і залежністю двох в.В.
- •2.22. Вивести рівняння лінійної середньоквадратичної регресії y на х(х на y). Пояснити зміст позначень.Дати означення коефіцієнту регресії , залишкової дисперсії та пояснити, що вони характеризують.
- •2.23. Сформулювати теорему про корельованість складових нормально розподіленої двовимірної в.В.
- •2.25. Записати формули для обчислення математичного сподівання тта дисперсії функцій д.В.В. Та н.В.В.Навести приклади.
- •2.26. Пояснити, як будуються випадкові величини, що мають розподіл:а) Пірсона х2;б) Стьюдента;в) Фішера
- •3.1. Сформулювати предмет математичної статистикита її основні задачі.
- •3.2.Дати означення:а) генеральної та вибіркової сукупностей;б)обсягу вибірки;в) повторної і без повторної, репрезентативної вибірки
- •3.3.Дати означення статистичної (емпіричної) ф-ї розподілу та сформулювати її основні властивості. Навести приклади побудови емпіричної функції розподілу та її графіки.
- •3.4. Дати означення кумулятивних частоти та відносної частоти.Пояснити їх статистичний зміст.
- •3.5.Дати означення полігону, гістограми.Навести приклади їх побудови.
- •3.6.Дати означення:а) точкової статистичної оцінки параметра розподілу генеральної сукупності;б) незаміщеної, ефективної, обгрунтованої вичерпної оцінки.
- •3.7.Означення генеральної та вибіркової середньої, довести...
- •3.8.Означення генеральних та вибіркових дисперсій та середнього квадр відхилення, формули
- •3.9.Дати озн вибіркових: Моди, медіани , початкового моменту, центрального моменту, асиметрії, ексцесу.
- •3.10.Дати означення: а)інтегральної оцінки параметра генеральної сукупності, її точності та надійності б)надійного інтервалу
- •3.12 Сформ. Та обґрунтувати взаємозалежність між точністю інтервальної оцінки
- •3.14.Дати означення емпіричної та теоретичної частот, формули для обч теоретичних частот розподілів : Пуассона, нормальної та генеральної сукупності
- •3.15.Дати озн функціональної, статистичної, кореляційної залежності, умовного середнього, вибіркових рівняння та лінії регресії.
- •3.16.Вивести формули для обч параметрів вибіркового рівн лінійної регресії : а) за не згрупованими даними, б) за згрупованими
- •3.17.Записати формулу для обч вибіркової кореляції кінців надійного інтервалу для інтерн. Оцінки коеф кореляції нормально розподіленої ген сукупності
- •3.18.Дати означення статистичної гіпотези, назвати основні види, означення нульової, альтернативної гіпотез, помилки 1 і 2 роду
- •3.19.Означення статистичного критерію, спостереженого та теор значенню критерію, Крит обл., обл. Прийняття гіпотези, критичних точок, однобічної та двобічної Крит обл., лівоб та правоб крит обл
- •3.20.Дати означення рівня значущості та потужності статистичного критерію. Пояснити способи знаходження однобічної та двобічної критичних областей.
- •3.21 Навести приклади перевірки гіпотез про..
- •1.1.Cформулювати предмет теорії імовірностей?
- •1.2.Дати означення підмножини, скінченної, нескінченної, зліченої, незліченої, упорядкованої та неупорядкованої множин. Навести приклад.
- •1.3.Дати означення об’єднання(або суми), перетину(або добутку) та різниці множин. Навести основні властивості цих операцій та відповідні приклади.
2.25. Записати формули для обчислення математичного сподівання тта дисперсії функцій д.В.В. Та н.В.В.Навести приклади.
Мат. сподівання ДВВ Х наз. число, яке = сумі добутків усіх можливих значень Х на відповідні їм імовірності.
М(Х)=
для
ДВВ
М(Х)=
для НВВ
Дисперсією ДВВ Х наз. число, яке = мат. сподіванню квадрата відхилення ДВВ Х від її мат. сподівання.
D(X) = M(( X- M(X))
)
для ДВВ
D(X) =
f (x; y) =
(
F(x;
y))/(
x
*
y)-
функція щільності СНВВ.
Нехай випадкова дискретна величина Х приймає значення х1, х2,…Xn з відповідними ймовірностями р1,р2,…Pn.
Задати закон
розподілу такої ВВ- це задати рівність
Pk=P(X=
),
яку можна розглядати як функцію.
Існують
1.Біноміальний ЗР
2.Пуассона
3.Геометричний
4.Гіпергеометричний
5.Поліноміальний
2.26. Пояснити, як будуються випадкові величини, що мають розподіл:а) Пірсона х2;б) Стьюдента;в) Фішера
Розподіл Пірсона (х )
-
теоретичні частоти
- спостережене
значення критерія
Розподіл Стьюдента (t)
Нехай Z –нормальна
ВВ, M(Z)=0,
(Z)=1,
а V- незалежна від Z величина, яка
розподілена по закону
ступенями
вільності. Тоді величина:Т=Z/(V/k)
Має розподіл, який наз. t-розподілом з k ступенями вільності.
Розподіл Фішера (F)
Якщо U і V- НВВ,
розподілені по закону
зі
степенями вільності К1 і К2.К1- число
степенів вільності більшої дисперсії.К2-
число степенів вільності меншої дисперсії
F=(U/k1)/(V/k2)Має розподіл, який наз. розподілом F Фішера.
Щильність цього розподілу:
f(x)=
якщо
x>0
3.1. Сформулювати предмет математичної статистикита її основні задачі.
Основні задачі:
розробка методів збору статистичних даних та їх групування
оцінка невідомих параметрів сукупності за даними вибору
розробка методів виявлення наявності , виду, щильності, взаємозв’язків між ознаками перевірка статистичних гіпотез.
3.2.Дати означення:а) генеральної та вибіркової сукупностей;б)обсягу вибірки;в) повторної і без повторної, репрезентативної вибірки
Генеральна – сукупність об’єктів , з яких зроблено вибірку.
Вибіркова – сукупність випадково взятих об’єктів .
Об’ємом сукупності наз. кількість об’єктів цієї сукупності.
Повторною наз. Вибірку, при якій відібраний об’єкт повертається до генеральної сукупності перед відбором іншого об’єкту.
Вибірку наз. безповторною, якщо взятий об’єкт до генеральної сукупності не повертається. Найчастіше використовують без повторні вибірки.
Репрезентативна – вибірка, яка здійснюється випадково. Це вибірка яку можна ефективно використовувати для вивчення відповідної ознаки генеральної сукупності.
3.3.Дати означення статистичної (емпіричної) ф-ї розподілу та сформулювати її основні властивості. Навести приклади побудови емпіричної функції розподілу та її графіки.
Емпірична
функція розподілу вибірки - це така
функція F*(х),
значення якої для кожного числа х =
відносній частоті події {X<x}.
, де nx
– кількість варіант, які менші від х, n
– об’єм вибірки.
. тобто F*(х)=
Властивості: 1. 0<= F*(х)<=1; 2. F*(х) –
зростаюча функція; 3. F*(х)=0 при x<=x1 i
F*(х)=1 при x>xm де х1 – наіменша варіанта,
xm – найбільша варіанта.