
Процессы свечения молекул
Люминесценция – процесс свечения молекул, сопровождающий переход электронов с возбужденных уровней на основной:
1. флюоресценция – свечение молекулы в момент облучения;
2. фосфоресценция – свечение после прекращения облучения.
При переходе электронов с возбужденных уровней на основной происходит испускание кванта люминесценции.
Закон Стокса устанавливает, что «Длина волны света испускаемого при люминесценции всегда больше длины волны света, который ее вызвал».
Это связано с тем, что электроны с возбужденных уровней не сразу попадают на основной. Изначально электроны переходят с более высоких уровней на менее, но которые являются также возбужденными. Переходы сопровождаются потерей части энергии, которая переходит в тепло. Электроны должны перейти на самый низкий возбужденный уровень (S0*-уровень), с которого могут возвращаться на основной (S0-уровень). Квант люминесценции выделяется при этом переходе, при этом часть энергии растрачена, поэтому длина волны кванта люминесценции будет больше.
Возбуждение молекулы, которое происходит при флюоресценции, длится 10-9-10-8 c, поэтому ее можем наблюдать в момент освещения, ибо период возбуждения имеет короток.
Процесс фосфоресценции связан с переходом электронов с триплетного уровня (Т-уровень) на основной (S0-уровень), что длится от 10-3 с до нескольких секунд. Триплетный уровень располагается ниже минимального возбужденного S0*. Электроны при поглощении энергии не попадают на триплетный уровень, а могут попадать на него при переходе с нижнего возбужденного. При этом электрон меняет свой спин на противоположный. На уровне появляются не спаренные электроны, переход с триплетного уровня на основной сопровождается высвечиванием кванта, при этом квант будет иметь еще большую длину волну, чем при флюоресценции.
Процессы люминесценции оцениваются квантовым выходом - отношение количества квантов люминесценции к числу поглощенных квантов, φ = n / N.
Закон Вавилова устанавливает: «Квантовый выход люминесценции не зависит от длины волны света, вызвавшего люминесценцию».
Изучение спектров люминесценции позволяет судить о величине квантов энергии, запасаемых в молекуле, рассчитать положение энергетических уровней, определить время возбужденного состояния по скорости появления и ухода люминесценции, исследовать состояние вещества.
При химических реакциях может высвобождаться энергия, достаточная для высвечивания кванта люминесценции – хемилюминесценция – свечение молекул, сопряженное с химическими реакциями:
1. биохемилюминесценция;
2. фотохемилюминесценция - наблюдается при обратных фотохимических реакциях.
Светлячки, грибы, морские организмы обладают биохемилюминесценцией, которая связана с ферментативными процессами.
Связано свечение с веществами люцеферинами, которые приобретают свойство свечения при действии фермента люциферазы. Свечение происходит, когда энергия АТФ в присутствии кислорода и ионов магния переходит с люциферазы на люциферин.
При исследовании процессов в биологических объектах было обнаружено слабое свечение. Гурвич 1924 год обнаружил свечение в корешках лука, что усиливало процессы митоза в других клетках (митогенетические лучи). Тарусов выявил процессы свечения при неферментативном окислении липидов. Обнаружено свечение митохондрий при нарушении их нормальной функции. Изучение биолюминесценции позволяет исследовать состояние молекул на молекулярном и субмолекулярном уровне.