
- •Статистика как наука
- •Методология статистики
- •Задачи статистики
- •Статистическое исследование
- •Этапы статистических операций
- •Понятие статистического наблюдения
- •Этапы статистического наблюдения
- •Формы, виды и способы статистического исследования
- •Виды статистического наблюдения
- •Способы статистического наблюдения
- •Ошибки статистического наблюдения
- •Сводка статистических данных
- •Понятие и виды группировки
- •Принципы построения группировок
- •Вторичная группировка
- •Ряды распределения
- •Полигон
- •6.1. Распределение домохозяйств по размеру
- •Гистограмма
- •Кумулята
- •6.4. Кривая концентрации Понятие о статистических таблицах
- •Виды статистических таблиц
- •Классификация статистических показателей
- •Абсолютная величина
- •Относительные величины
- •Сущность и виды средних величин
- •Степенные средние величины
- •Структурные средние величины
- •Средняя арифметическая
- •Средняя геометрическая
- •Средняя квадратическая
- •Показатели вариации
- •Размах вариации (r)
- •Среднее линейное и квадратическое отклонение
- •Дисперсия
- •Относительные показатели вариации
- •Статистическая совокупность
- •Генеральная совокупность и выборка из нее
- •Основные способы организации выборки
- •Основные характеристики параметров генеральной и выборочной совокупности
- •Ошибки выборки
- •Распространение выборочных результатов на генеральную совокупность
- •Необходимый объем выборки
- •Практические примеры расчета
- •Виды рядов динамики. Методы расчета среднего уровня в рядах динамики
- •Анализ рядов динамики
- •Анализ сезонных колебаний
- •Приведение рядов динамики к одинаковому основанию
- •Методы выравнивания рядов динамики
- •Понятие об индексах. Классификация индексов
- •Индексный метод
- •Индивидуальные индексы
- •Общие индексы
- •Основные формулы исчисления сводных или общих индексов
Средняя геометрическая
Среднегеометрическая величина дает возможность сохранять в неизменном виде не сумму, а произведение индивидуальных значений данной величины. Ее можно определить по следующей формуле:
Среднегеометрические величины наиболее часто используются при анализе темпов роста экономических показателей.
Геометрическая простая
Для расчетов средней геометрической простой используется формула:
где:
— цепной коэффициент роста
— число этих коэффициентов роста
П — знак произведения
— количество уровней ряда
— значение начального уровня ряда
— значение конечного уровня ряда
Геометрическая взвешенная
Для определения средней геометрической взвешенной применяется формула:
Средняя квадратическая
Средние диаметры колес, труб, средние стороны квадратов определяются при помощи средней квадратической.
Среднеквадратические величины используются для расчета некоторых показателей, например коэффициент вариации, характеризующего ритмичность выпуска продукции. Здесь определяют среднеквадратическое отклонение от планового выпуска продукции за определенный период по следующей формуле:
Эти величины точно характеризуют изменение экономических показателей по сравнению с их базисной величиной, взятое в его усредненной величине.
Квадратическая простая
Средняя квадратическая простая вычисляется по формуле:
Квадратическая взвешенная
Средняя квадратическая взвешенная равна:
В статистике могут применяться также степенные средние 3-го и более высоких порядков.
Показатели вариации
Вариация — это различия индивидуальных значений признака у единиц изучаемой совокупности. Исследование вариации имеет большое практическое значение и является необходимым звеном в экономическом анализе. Необходимость изучения вариации связана с тем, что средняя, являясь равнодействующей, выполняет свою основную задачу с разной степенью точности: чем меньше различия индивидуальных значений признака, подлежащих осреднению, тем однороднее совокупность, а, следовательно, точнее и надежнее средняя, и наоборот. Следовательно по степени вариации можно судить о границах вариации признака, однородности совокупности по данному признаку, типичности средней, взаимосвязи факторов, определяющих вариацию.
Изменение вариации признака в совокупности осуществляется с помощью абсолютных и относительных показателей.
Абсолютные показатели вариации включают:
размах вариации
среднее линейное отклонение
дисперсию
среднее квадратическое отклонение
Размах вариации (r)
Размах вариации — это разность между максимальным и минимальным значениями признака
Он показывает пределы, в которых изменяется величина признака в изучаемой совокупности.
Пример
Опыт работы у пяти претендентов на предшествующей работе составляет: 2,3,4,7 и 9 лет. Решение: размах вариации = 9 — 2 = 7 лет.
Для
обобщенной характеристики различий в
значениях признака вычисляют средние
показатели вариации, основанные на
учете отклонений от средней арифметической.
За отклонение от средней принимается
разность
.
При
этом во избежании превращения в нуль
суммы отклонений вариантов признака
от средней (нулевое свойство средней)
приходится либо не учитывать знаки
отклонения, то есть брать эту сумму по
модулю
,
либо возводить значения отклонений в
квадрат