
- •"Телекоммуникационные информационные системы"
- •1Классификация телекоммуникационных систем
- •1.1Типы телекоммуникационных систем
- •1.2Мультисервисные сети
- •1.3Системы телевещания
- •1.3.1Классификация по виду тв-сигнала
- •1.3.2Способы доставки тв-сигнала
- •1.4Системы подвижной связи
- •1.4.1Сети сотовой связи
- •1.4.2Сети персональной спутниковой связи
- •1.5Сети абонентского доступа
- •1.6Сети на базе технологии gepon
- •1.6.1Цифровые абонентские линии xDsl
- •1.6.2Оптические сети на базе технологий ftTx
- •2Каналы телекоммуникационных систем
- •2.1Общая классификация каналов связи
- •2.2Физические каналы связи
- •2.2.1Коаксиальный кабель
- •2.2.2Витая пара
- •2.2.3Приземные радиоволны
- •2.2.4Спутниковые радиоволны
- •2.2.5Радио-релейные линии
- •2.2.6Волоконно-оптические линии связи
- •3Коммутация, методы коммутации
- •3.1Общие понятия коммутации
- •Коммутация каналов,
- •Коммутация пакетов.
- •3.2Коммутация каналов
- •3.2.1Коммутация каналов на основе частотного мультиплексирования
- •3.2.2Коммутация каналов на основе разделения времени
- •3.2.3Оптическое (волновое) мультиплексирование
- •3.2.4Дуплексный режим работы на основе технологий fdm, tdm и wdm
- •3.3Коммутация пакетов
- •3.4Коммутация ячеек
- •4Телевещание
- •4.1Конфигурация сетей телевещания
- •4.2Методы доставки телевизионного контента
- •4.2.1Телевидение коллективного пользования (эфирное)
- •4.2.1Кабельное телевидение
- •4.2.2Технологии беспроводного распределения информации mmds
- •5.2Основные характеристики стандарта gsm
- •5.3Физические и логические каналы
- •5.4Процесс преобразования сигналов в мобильной станции
- •5.5Структурирование информации
- •5.6Шифрование
- •5.7Структура сети gsm
- •5.8Технология edge
- •6Системы сотовой связи с кодовым разделением каналов
- •6.1Принципы кодового разделения каналов
- •6.2Система сотовая связи с кодовым разделением каналов
- •6.3Обеспечение безопасности в стандарте is-95
- •6.4Базовая станция стандарта is –95
- •7Микросотовые системы мобильной связи
- •7.1Структура dect - систем
- •7.2Технические аспекты dect
- •7.3Организация протоколов dect
- •7.3.1Физический уровень
- •7.3.2Уровень доступа к среде
- •7.3.3Уровень управления звеном передачи данных
- •7.3.4Сетевой уровень
- •8Спутниковые системы связи
- •8.1Классификация систем спутниковой связи
- •8.2Принципы построения спутниковых систем связи
- •8.3Спутниковый Internet
- •9Глобальная навигационная система
- •9.1Принцип работы системы gps
- •9.2Основные принципы работы системы глонасс
- •9.3Сравнительные характеристики систем глонасс и gps
- •9.4Спутник глонасс
- •9.5Обзор gps оборудования
- •10Технологии городских телекоммуникационных сетей
- •10.1Плезиосинхронная цифровая иерархия pdh
- •10.2Синхронная цифровая иерархия sdh
- •10.2.1Иерархия скоростей сети sdh
- •10.2.2Уровни sonet и эталонная модель osi
- •10.3Топология сети sdh
- •10.3.1Топология "точка-точка"
- •10.3.2Топология "последовательная линейная цепь".
- •10.3.3Топология "звезда", реализующая функцию концентратора
- •10.3.4Топология "кольцо"
- •10.4Процедуры мультиплексирования внутри иерархии sdh.
- •10.5Оборудование сети sdh
- •10.6Процессы загрузки/выгрузки цифрового потока
- •11Спектральное уплотнение каналов xWdm
- •11.1Оптические волокна
- •11.1.1Модовость оптического волокна
- •11.1.2Технологии соединения оптических волокон
- •11.1.3Окна прозрачности оптического волокна
- •11.2Спектральное уплотнение каналов wdm
- •11.3Виды wdm систем
- •11.4Dwdm технология
- •11.4.1Принцип плотного мультиплексирования
- •11.4.2Основные узлы dwdm-оборудования
- •12Технологии кабельного абонентского доступа
- •12.1Общая характеристика
- •12.2Технология gepon
- •12.3Технологии семейства xDsl
- •12.4Технологии семейства ftTx
11.4.2Основные узлы dwdm-оборудования
Технология DWDM предъявляет гораздо более жесткие требования к оптическим источникам излучения, нежели SDH. Чтобы соседние каналы не влияли друг на друга, ширина спектра излучения должна быть значительно меньше ширины оптического канала, т. е. на уровне 0,2-0,3 нм. В системах SDH по оптическому кабелю передается только один сигнал на частоте 1310 или 1550 нм. Поэтому требования к стабильности частоты и ширине спектра излучения оптического источника сравнительно невысоки.
Для передачи по одному волокну нескольких сигналов STM необходимо преобразовать их из "формата" SDH в "формат" DWDM. Эту функцию выполняет транспондер. На его вход подается сигнал STM (или ATM, IP), который необходимо преобразовать в "формат" DWDM, т. е. в сигнал со строго фиксированной длиной волны и узким спектром излучения. Оптический STM-сигнал преобразуется в электрическую форму, восстанавливается форма сигнала, и далее выполняется обратное электрооптическое преобразование в "формат" DWDM. Для восстановления формы сигналов используется 3R-преобразование:
1R - усиление сигнала,
2R - 1R плюс восстановление формы сигналов,
3R - 2R плюс ресинхронизация (re-timing).
Для передачи сигнала на сравнительно небольшие расстояния, в пределах города или области, достаточно использовать транспондеры с функцией 2R.
Можно выделить четыре основных узла оборудования DWDM:
оптический терминальный мультиплексор (OTM),
регенератор (REG),
оптический усилитель (OLA),
оптический мультиплексор ввода-вывода (OADM).
Основными узлами оптического терминального мультиплексора являются оптический мультиплексор (OM) и оптический демультиплексор (OD). В направлении передачи OM мультиплексирует сигналы с фиксированными длинами волн, сформированные на выходе транспондеров, в групповой сигнал, который и передается по оптическому кабелю. На приеме OD демультиплексирует групповой сигнал на сигналы с фиксированными длинами волн, которые подаются на транспондеры.
Оптический регенератор используется для восстановления формы группового сигнала, подавления джиттера и улучшения соотношения сигнал/шум. С этой целью используется преобразование O-E-O (Optical-Electrical-Optical). Групповой сигнал на входе REG преобразуется в электрическую форму, проводится 3R-восстановление формы сигнала, и далее он опять преобразуется в оптическую форму. Регенератор строится на базе двух OTM-мультиплексоров, включенных по схеме back-to-back через транспондеры. Такая конфигурация позволяет осуществить ввод-вывод всех оптических каналов.
Оптический усилитель соответственно усиливает групповой сигнал без восстановления его формы. При передаче информации на большие расстояния усилители оснащают функцией эквалайзера - выравнивания мощности оптических каналов. В городских условиях функция эквалайзера не используется, и это уменьшает стоимость усилителя. Оптический усилитель наиболее дешевый узел оборудования DWDM (в сравнении с OTM-мультиплексором и регенератором).
Оптический мультиплексор ввода-вывода строится на базе оптического усилителя, в который добавляется пассивная оптическая плата, позволяющая осуществить ввод-вывод ограниченного числа оптических каналов с фиксированными длинами волн. Она представляет собой брегговскую решетку с периодическими изменениями индекса преломления, которые достигаются за счет насечек на оптоволоконном кабеле, сделанных с помощью ультрафиолетового излучения. OADM-мультиплексор на базе брегговских решеток позволяет осуществлять ввод-вывод от 1 до 12 оптических каналов. Для остальных каналов он работает как усилитель. Основное преимущество такого мультиплексора по сравнению с OTM-мультиплексором и регенератором - гораздо более низкая его цена.
Другая возможность уменьшения стоимости DWDM-оборудования - использование "цветных" интерфейсов. Как мы уже говорили, к транспондеру с одной стороны подключается SDH-оборудование, с другой - оборудование DWDM (оптический мультиплексор/демультиплексор или пассивное оптическое устройство ввода-вывода на базе брегговских решеток). Но если в оборудовании SDH использовать STM-интерфейсы с фиксированной длиной волны и узким спектром излучения, то необходимость в транспондерах отпадает. Такие STM-интерфейсы и называются "цветными". Их использование, означающее не что иное, как отказ от транспондеров, позволяет сократить количество преобразований O-E-O и уменьшить число соединительных оптических кабелей, что повышает надежность оборудования. Кроме того, уменьшаются размеры оборудования и энергопотребление.