
- •Лекция 1
- •Раздел I. Проблемы развития энергетики
- •1.1. Энергетика и энергетические ресурсы
- •По отдельным регионам, тВт∙ч
- •1.1.1. Возобновляемые и невозобновляемые источники энергии
- •России до 2050 г.
- •Лекция 2
- •1.1.2. Перспективы использования твердого топлива. Основные месторождения ископаемого твердого топлива рф
- •Лекция 3
- •1.1.3. Перспективы развития нефтяного комплекса и систем газоснабжения. Месторождения нефти и газа
- •По состоянию на начало 2001 г.
- •Лекция 4
- •1.2. Технические характеристики топлив
- •1.2.1. Технические характеристики мазута
- •1.2.2. Технические характеристики газа
- •1.2.3. Характеристики твердого топлива
- •Горение топлива
- •1.3.2. Основные потребители воды и характеристика сточных вод
- •1.4. Энергосберегающие технологии в энергетике. Энергоаудит
- •Лекция 6
- •Раздел II. Виды потребления энергии и графики нагрузок
- •2.1. Электрическое потребление
- •2.2. Тепловое потребление
- •Раздел III. Технологические схемы
- •Раздельного и комбинированного производства
- •Электроэнергии и тепла
- •Лекция 7
- •3.1. Тепловые схемы котельных
- •3.1.1. Принципиальная тепловая схема (птс) котельной с паровыми котлами
- •3 .1.2. Принципиальная тепловая схема (птс) котельной с водогрейными котлами для закрытых систем теплоснабжения
- •3.1.3. Принципиальная тепловая схема (птс) котельной для открытых систем теплоснабжения с водогрейным котлами
- •3.1.4. Принципиальная тепловая схема (птс) котельной с паровыми и водогрейными котлами
- •3.1.5. Котельная с комбинированными пароводогрейными агрегатами
- •Лекция 8
- •3.2. Принципиальная технологическая схема паротурбинной электростанции
- •3.3. Технологическая структура электростанций
- •Лекция 9
- •Раздел IV. Классификация тепловых электрических станций (тэс)
- •Раздел V. Показатели тепловой и общей экономичности тэс
- •Лекция 12
- •5.1.3. Расходы пара, тепла, топлива и коэффициенты полезного действия конденсационной электростанции с промежуточным перегревом пара
- •Лекция 13
- •5.2. Тепловая экономичность и энергетические показатели теплоэлектроцентралей (тэц)
- •5.2.1. Расходы пара и тепла на теплофикационные установки
- •Численное значение э находится в пределах 50 – 180, возрастая с повышением начальных параметров и снижением конечного давления.
- •Лекция 14
- •Первое слагаемое в формуле (5.2.9)
- •5.2.2. Энергетические показатели тэц
- •Лекция 15
- •Раздел VI. Начальные параметры и промежуточный перегрев пара
- •6.1. Зависимость тепловой экономичности тэс от начальных параметров пара
- •6.2. Промежуточный перегрев пара на кэс
- •Лекция 16
- •6.3. Промежуточный перегрев пара на тэц
- •6.4. Влияние конечных параметров пара на тепловую экономичность тэс
- •6.5. Способы промежуточного перегрева пара
- •Раздел VII. Регенеративный подогрев
- •7.2. Расход пара на турбину с регенеративными отборами
- •7.3. Типы подогревателей и схемы их включения
- •7.4. Оптимальное распределение регенеративного подогрева питательной воды на кэс
- •7.4.1. Распределение регенеративного подогрева воды и отборов в турбине при промежуточном перегреве пара
- •7.4.2. Охладители пара отборов и их влияние на распределение регенеративного подогрева воды
- •7.5. Регенеративный подогрев воды на теплоэлектроцентралях (тэц). Распределение регенеративного подогрева воды на тэц
Раздел VII. Регенеративный подогрев
ПИТАТЕЛЬНОЙ ВОДЫ
7.1. Общая характеристика регенеративного подогрева
питательной воды и его энергетическая эффективность
Регенеративный подогрев основного конденсата и питательной воды котлов осуществляется паром, отработавшим в турбине. Греющий пар, совершив работу в турбине, направляется в регенеративные подогреватели, в которых конденсируется, отдавая тепло воде. Выделенная этим паром теплота возвращается в котел, как бы регенерируется.
Регенеративный подогрев воды (основного конденсата турбины) повышает кпд турбоустановки на 10–12 % и применяется на всех современных паротурбинных электростанциях.
Турбины выполняют с 7-9 регенеративными отборами пара и применяют соответствующее число последовательно включенных подогревателей (ступеней подогрева). Повышение кпд турбоустановки электростанции обусловливается выработкой электроэнергии без потерь теплоты в конденсаторе турбины.
В теплофикационных турбинах отпуск теплоты внешнему потребителю позволяет в еще больших масштабах выработать электроэнергию без потерь
теплоты в конденсаторе турбины, что приводит к росту кпд турбоустановки, но при этом термический кпд цикла снижается, тогда как при регенеративном подогреве растет. Существенным отличием регенеративных отборов пара от теплофикационных является ограниченность количества используемой отработавшей теплоты турбин в зависимости от возможного подогрева питательной воды. Но на отработавшую теплоту регенеративных отборов топливо не расходуется. На отработавшую теплоту турбин для внешнего потребителя расходуется дополнительное количество топлива.
По физическому методу распределения теплоты между электрической и тепловой энергией на долю последней относят теплоту, действительно затрачиваемую на нее, а на долю электрической энергии – остальное количество теплоты.
На конденсационной электростанции с регенеративным подогревом воды расход теплоты на производство электроэнергии совпадает с полным расходом теплоты.
Тепловая
схема турбоустановки с регенерацией и
цикл Ренкина с регенерацией в T-S
диаграмме показаны на рис. 7.1 и 7.2.
Рис. 7.1. Тепловая схема турбоустановки с регенерацией
Термический кпд цикла Ренкина без перегрева пара с полной регенерацией будет равен термическому кпд цикла Карно (рис. 7.2. а).
Термический кпд
цикла Ренкина
с
перегревом пара даже в случае предельной
регенерации будет
меньше термического кпд
цикла Карно
.
Но при регенерации термический кпд
цикла Ренкина
заметно возрастает.
а)
б)
Рис. 7.2. а – цикл Ренкина без перегрева пара с регенерацией;
б – цикл Ренкина с перегревом пара с регенерацией в Т-S диаграмме
Для термического кпд цикла с предельной регенерацией определяется как (см. рис. 7.2. б):
.
В результате
осуществления регенеративного подогрева
основного конденсата и питательной
воды в котел поступает вода, нагретая
до температуры насыщения при давлении
,
энтальпия воды при этом
.
Следовательно, к одному килограмму
рабочего тела в котле подводится тепло
.
В конденсаторе один килограмм пара отдает тепло
.
Однако если, как
мы выяснили, из каждого килограмма пара,
поступающего в турбину, в конденсатор
попадает лишь
кг,
то очевидно, что тепло, отдаваемое в
конденсаторе в расчете на 1кг пара,
составляет
.
Следовательно,
.