
- •1. Понятие как форма мышления
- •1) Соподчинение
- •2) Противоположность (контрарность)
- •3) Противоречие (контрадикторность)
- •Логическая операция деления понятий. Виды деления
- •18. Правила деления
- •1) Деление должно вестись только по одному основанию.
- •Логическая структура суждений
- •8. Виды простых суждений
- •9. Виды и состав простых суждений, их запись
- •23. Выделяющие и исключающие суждения
- •24. Распределенность терминов в суждениях
- •11. Виды сложных суждений: особенность логического анлиза, способы выражения в языке, символическое обозначение иусловия истинности.
- •26. Условные (импликативные) и сложные разделительные (дизъюнктивные) суждения
- •Непосредственные дедуктивные умозаключения: превращение
- •38. Непосредственное дедуктивное умозаключение: обращение
- •39. Непосредственное дедуктивное умозаключение: противопоставление предикату
- •Чисто условное и условно-категорическое умозаключения Чисто условное умозаключение
- •Условно-категорическое умозаключение
- •§ 1. Понятие аналогии
- •§ 2. Виды аналогии
- •§ 2. Состав аргументации: субъекты, структура Субъекты аргументации
- •3. Демонстрация — это логическая связь между аргументами и тезисом.
- •2. Косвенным называют обоснования тезиса путем установления ложности антитезиса или других конкурирующих с тезисом допущений.
- •Правила и ошибки по отношению к аргументам Правила и ошибки по отношению к аргументам
- •33.Опровержение. Его структура
2. Косвенным называют обоснования тезиса путем установления ложности антитезиса или других конкурирующих с тезисом допущений.
Конкурирующими с тезисом (Т) допущениями могут быть две их разновидности: (1) противоречащее тезису суждение, которое называютантитезисом (1 Т), (2) члены дизъюнкции в разделительном сужденииРазличие в структуре конкурирующих допущений определяет два вида косвенного обоснования: (1) апагогическое и (Т) разделительное.
(1) Апагогическим1 называют обоснование тезиса путем у становления ложности противоречащего ему допущения — антитезиса.
(2) Разделительным называют косвенное обоснование тезиса, выступающего членом дизъюнкции, путем установления ложности и исключения всех других конкурирующих членов дизъюнкции.
24. Доказательство как вид аргументации: особенности и структура
Познание отдельных предметов, их свойств происходит посредством форм чувственного познания (ощущений и восприятий). Мы видим, что этот дом ещё не достроен, ощущаем вкус горького лекарства и так далее. Эти истины не подлежат особому доказательству, они очевидны. Во многих случаях, например на лекции, в сочинении, в научной работе, в докладе, на защите диссертации и во многих других, приходится доказывать, обосновывать высказанные суждения. Доказательность важное качество правильного мышления. Теория доказательства и опровержения является в современных условиях средством формирования научно обоснованных убеждений. Доказательство - это совокупность логических приемов обоснования истинности какого-либо суждения с помощью других истинных и связанных с ним суждений. Доказательство связано с убеждением, но не тождественно ему: доказательства должны основываться на данные науки и общественно-исторической практики, убеждения же могут быть основаны, например, на религиозной вере в догматы церкви, на предрассудках, на неосведомлённости людей в вопросах экономики и политики, на видимости доказательности, основанной на различного рода софизмах. Религиозные проповелники могут “убедить” какую-то часть людей в существовании якобы бога, ада, рая и так далее.
25. Доказательство как вид аргументации: особенности и структура
1.Структура доказательства
Основу доказательства составляют следующие положения:
1. Тезис – суждение, истинность которого надо доказать
2.Аргументы – это те истинные суждения, которыми пользуются при доказательстве тезиса.
3.Демонстрация (форма доказательства) – способ логической связи между тезисом и аргументами.
2. Виды доказательства
Доказательства по форме делятся на прямые и непрямые (косвенные). Прямое доказательство идет от рассмотрения аргументов к доказательству тезиса, то есть истинность доказательства непосредственно обосновывается аргументами. Широко используется прямое доказательство в статистических отчетах, в различного рода документах, в постановлениях. Непрямое (Косвенное) доказательство - это доказательство в котором истинность выдвинутого тезиса обосновывается путём доказательства ложности антитезиса. Оно применяется тогда, когда нет аргументов для прямого доказательства. Антитезис может быть выражен в одной из двух форм:
1)если тезис обозначить буквой а , то его отрицание (а) будет антитезисом, то есть противоречащим тезису суждением;
2) антитезисом для тезиса а в суждении а...в...с служат суждения в и с .
В зависимости от этого различия в структуре антитезиса косвенные доказательства делятся на два вида – апагогическое (доказательство от «противного») и разделительное доказательство (методом исключения). Первое существляется путем установления ложности противоречащего тезису суждения. Этот метод часто используется в математике. Во втором антитезис является одним из членов разделительного суждения, в котором должны быть обязательно перечислены все возможные альтернативы, например: Преступление совершил либо А, либо Б, либо С. Доказано, что не совершали преступление нм А, ни Б. Следовательно преступление совершил С. Истинность тезиса устанавливается путем последовательного доказательства ложности всех членов разделительного суждения кроме одного.
Билеит № 26
Правила и ошибки доказательств.
Правила и ошибки, относящиеся к тезису
Правила.
1. Тезис должен быть логически определенным, ясным и точным. Иногда люди в своем выступлении, лекции не могут четко, ясно, однозначно сформулировать тезис.
2. Тезис должен оставаться тождественным, т.е. одним и тем же на протяжении всего доказательства или опровержения.
Ошибки.
1. “Подмена тезиса”. Согласно правилам доказательного рассуждения, тезис должен быть ясно сформулирован и оставаться одним и тем же на протяжении всего доказательства или опровержения. При нарушении его возникает ошибка называемая “подмена тезиса”. Суть ее в том, что один тезис умышленно или неумышленно подменяют другим и этот новый тезис начинают доказывать или опровергать. К примеру, надо показать, что на осине не могут расти яблоки; вместо этого доказывается, что они растут обычно на яблоне и не встречаются ни на груше, ни на вишне.
2. “Довод к человеку”. Ошибка состоит в подмене доказательства самого тезиса ссылками на личные качества того, кто выдвинул этот тезис. Например, вместо того чтобы доказывать ценность и новизну диссертационной работы, говорят, что диссертант заслуженный человек, что он много потрудился над диссертацией и т.д. В научных работах иногда вместо конкретного анализа материала, изучения современных научных данных и результатов практики в подтверждение приводят цитаты из высказываний крупных ученых, видных деятелей и этим ограничиваются, полагая, что одной ссылки на авторитет достаточно. Разновидностью “довода к человеку” является ошибка, называемая “довод к публике”, состоящая в попытке повлиять на чувства людей, чтобы те поверили в истинность выдвинутого тезиса, хотя его и нельзя доказать.
3. “Переход в другой род”. Имеются две разновидности этой ошибки: а) “кто слишком много доказывает, тот ничего не доказывает”; б) “кто слишком мало доказывает, тот ничего не доказывает”. В первом случае ошибка возникает тогда, когда вместо одного истинного тезиса пытаются доказать другой, более сильный тезис, и при этом второй тезис может оказаться ложным. Если из а следует б, но из б не следует а, то тезис а является более сильным, чем тезис б. Например, если вместо того чтобы доказывать, что этот человек не начинал первым драку, начнут доказывать, что он не участвовал в драке, то ничего не смогут доказать, если этот человек действительно дрался и кто-нибудь это видел. Ошибка “кто слишком мало доказывает, тот ничего не доказывает” возникает тогда, когда вместо тезиса а мы докажем более слабый тезис б. Например, если, пытаясь доказать, что это животное зебра, мы доказываем, что оно полосатое, то ничего не докажем, так как тигр тоже полосатое животное.
Правила и ошибки, относящиеся к аргументам
Правила.
Аргументы, приводимые для доказательства тезиса, должны быть истинными.
Аргументы должны быть достаточным основанием для доказательства тезиса.
Аргументы должны быть суждениями, истинность которых доказана самостоятельно, независимо от тезиса.
Ошибки.
1. Ложность основания (“Основное заблуждение”). В качестве аргументов берутся не истинные, а ложные суждения, которые выдают или пытаются выдать за истинные. Ошибка может быть непреднамеренной и преднамеренной (софизмом), совершенной с целью запутать, ввести в заблуждение других людей Употребление ложных, недоказанных или непроверенных аргументов нередко сопровождается оборотами: “всем известно”, “давно установлено”, “совершенно очевидно”, “никто не станет отрицать” и т.п. Слушателю как бы оставляется одно: упрекать себя за незнание того, что давно и всем известно.
2. “Предвосхищение оснований”. Эта ошибка совершается тогда, когда тезис опирается на недоказанные аргументы, последние же не доказывают тезис, а только предвосхищают его.
3. “Порочный круг”. Ошибка состоит в том, что тезис обосновывается аргументами, а аргументы обосновываются этим же тезисом. Эта разновидность ошибки “применение недоказанного аргумента”.
Правила и ошибки, относящиеся к демонстрации
Правила. Тезис должен быть заключением, логически следующим из аргументов по общим правилам умозаключений или полученным в соответствии с правилами косвенного доказательства. Ошибки.
1. Мнимое следование. Если тезис не следует из приводимых в его подтверждение аргументов, то возникает ошибка, называемая “не следует”. Иногда вместо правильного доказательства аргументы соединяют с тезисом посредством слов: “следовательно”, “итак”, “таким образом”, “в итоге имеем” и т.п., полагая, что установлена логическая связь между аргументами и тезисом. Эту логическую ошибку часто неосознанно допускают люди, не знакомые с правилами логики, полагающиеся на свой здравый смысл и интуицию. В результате возникает словесная видимость доказательства.
2. От сказанного с условием к сказанному безусловно. Аргумент, истинный только с учетом определенного времени, отношения, меры, нельзя приводить в качестве безусловного, верного во всех случаях. Так, если кофе полезен в небольших дозах (например, для поднятия артериального давления), то в больших дозах он вреден. Аналогично мышьяк ядовит, но в небольших дозах его добавляют в некоторые лекарства. Педагогика требует индивидуального подхода к учащимся; этика определяет нормы поведения людей, и в различных условиях они могут несколько варьироваться.
27. Умозаключения по аналогии: логическая природа и структура. Виды аналогии. Условия состоятельности выводов по аналогии
Косвенные доказательства бывают двух видов: апагогические и разделительные. В апагогическомдоказательстве к истинности тезиса приходят путем доказательства ложности антитезиса Косвенное апагогическое доказательство называют еще сведением к абсурду.
Если число рассматриваемых возможностей не ограничивать двумя (доказываемым утверждением и его отрицанием), то это будет так называемое косвенное разделительное доказательство. Его сущность состоит в том, что доказываемый тезис рассматривается как одно из некоторого числа предположений, в своей сумме исчерпывающих все возможные по данному вопросу предположения
70. Опровержение в логике, его формы и способы.
Понятие опровержения
Опровержением называется доказывание ложности какого-либо тезиса или несостоятельности доказательства в целом.
Опровержение осущ. Тремя способами |
|||
Опроверж тезиса |
Опроверж демонстрац |
Опроверж аргументов |
|
Опровержение тезиса может быть осуществлено:
а) путем приведения фактов, противоречащих тезису; б) путем доказательства истинности нового тезиса, противоречащего опровергаемому; в) путем установления ложности (или противоречивости) следствий, вытекающих из тезиса.
Опровержение очень часто направлено непосредственно не против тезиса, а против аргументов. Это достигается также различными путями:
а) путем доказательства ложности аргументов; б) установлением того, что аргументы, при помощи которых обосновывается выдвинутый тезис, являются для тезиса недостаточными; в) установлением того, что аргументы сами являются еще не доказанными; г)определением, что источник фактов, при помощи которых обосновывается выдвинутый тезис, является недоброкачественным.
Опровержение демонстрации показывает отсутствие логической связи между аргументами и тезисом.
71. Основные правила логического доказательства и ошибки.
ЛОГИЧЕСКИЕ ПРАВИЛА ДОКАЗАТЕЛЬСТВА И ОПРОВЕРЖЕНИЯ
ПРАВИЛА |
ОШИБКИ |
быть точно 1. Тезис должен сформулирован 2. Тезис должен оставаться одним и тем же в процессе всего доказательства или опровержения |
а) "подмена тезиса" - доказывается (опровергается) новый тезис б) "довод к человеку" - доказательство (опровержение) тезиса подменяется оценкой лица в) "довод к публике" - стремление воздействовать на чувства слушающих |
3. Основания должны быть истинными, доказанными, не подлежащими сомнению 4. Основания должны доказываться независимо от тезиса |
а) "основное заблуждение" - тезис обосновывается ложными аргументами б) "предвосхищение основания" - аргументы нуждаются в собственном обосновании в) "порочный круг" - аргументы доказываются посредством тезиса |
5. Доказательство (опровержение) должно строиться по общим правилам умозаключения |
а) "мнимое следование" - тезис не следует из приведенных оснований б) "от сказанного с условием к сказанному безусловно" - аргументы, истинные при определенных условиях, приводятся в качестве истинных при любых условиях |
72. Паралогизмы и софизмы. Логические парадоксы.
Нередко софизм обосновывается на таких логических ошибках, как подмена тезиса, доказательства, несоблюдение правил логического вывода, принятие ложных посылок за истинные и т.п
В процессе рассуждения иногда возникают логические парадоксы. Парадокс (от греч. paradoxes - неожиданный, странный) -в широком смысле - неочевидное высказывание, истинность которого устанавливается достаточно трудно.
Парадоксы в зависимости от области их применения бывают математические, политические и другие.
Паралогизмы - это неумышленные логические ошибки, обусловленные нарушением законов и правил логики. Паралогизм не является, в сущности, обманом, так как не связан с умыслом подменить истину ложью.
В отличие от паралогизмов софизмы - результат преднамеренного обмана, умышленные логические ошибки. Название "софизм" происходит от древнегреческого слова sophisma - хитрая уловка, выдумка. Софизм представляет собой рассуждение, кажущееся правильным, но содержащее скрытую логическую ошибку и служащее для придания видимости истинности ложному заключению. Софизм является особым приемом интеллектуального мошенничества, попыткой выдать ложь за истину и тем самым ввести в заблуждение.
28.
Основные формально-логические законы: сущность, требования (и возможные ошибки вследствие их нарушения), значение
выявление наиболее общих свойств и отношений между предметами и явлениями;
- фиксации свойств и характеристик самих мыслей и отношении между ними.
Отношения между мыслями также изучаются логикой и выражаются логическими терминами: суть (есть, являются); все (каждый, ни один); некоторые (если……., то…; и; или) и т.д. В ходе содержательных рассуждений и оценке конкретных данных, основы наших заключений, наряду с безусловными дедуктивными выводами используются индуктивные и традуктивные (по аналогии) умозаключения. Последние, несмотря на свой вероятностный характер, весьма существенны для доказательства и аргументации спорных положений.
Логика изучает именно эту рациональную ступень познания и мышления, его опосредованную способность перехода от старых знаний к новым, не обращаясь каждый раз к опыту. Для этого используется выводное знание, полученное путем рассуждений из старых знаний. Если известно, что “где дым, там и огонь. На холме – дым. То вывод: “на холме – огонь” – истинен, если истинно исходное знание и соблюдены требования логики.
Студент должен уяснить, что образование выводного знания подчиняется определенным законам, как и все явления в мире. Поэтому главное назначение логики заключается в изучении специфических мыслительных законов и правил достижения истинного выводного знания.
Каким образом делает это логика? Прежде всего, изучая формы, структуру и правила мышления в отвлечении их от конкретного содержания. При этом термин “логика” употребляется в двух основных смыслах.
Во – первых, для обозначения умения, навыка, искусства ясно, четко, убедительно и последовательно рассуждать, доказывать и опровергать различные положения. Например, сюда входят навыки точного употребления слов и предложений, что придает речи ясную и понятную форму. Логика показывает, что при правильном рассуждении заключение это логически необходимое следствие из посылок. Поэтому общая схема данного рассуждения приобретает форму логического закона. Наконец, логика помогает искусно доказывать и опровергать положения, формулировать и разрешать смысл задачи, видеть существо ошибок и уловок в споре, избегать софистических ухищрений.
Во – вторых, логика это особая наука, которая изучает формы мышления с точки зрения их структуры, а также законы и правила получения выводного знания. При этом логика становится инструментарием познавательного действия. Определяя границы и сущность предмета логики, следует отметить её значение в рамках критического мышления и рациональной аргументации для принятия и разработки управленческих решений. Поскольку логику интересует форма построения мыслей, и она отвлекается от конкретного содержания, заключенного в них, данный раздел называется формальной логикой. Ее законы, формы и правила мышления рассматриваются в данном учебном пособии.
29. -30 уже были.
32. Правила и ошибки в аргументации по отношению к тезису, аргументам, и демонстрации