
- •1. Цифровая форма представления информации. Основные параметры цифровых сигналов
- •2. Ненасыщенный биполярный ключ: схема, принцип работы, передаточная характеристика
- •Ненасыщенный биполярный ключ
- •3. Биполярный насыщенный ключ с динамической нагрузкой: схема, принцип работы, характеристики
- •4. Насыщенный биполярный ключ. Схема, принцип работы, передаточная характеристика
- •Транзистор в режиме насыщения
- •Транзистор в режиме отсечки
- •Передаточная характеристика
- •5. Фоторезисторы: устройство, принцип работы, основные параметры и характеристики
- •Основные параметры фоторезисторов
- •6. Светодиоды: принцип действия, виды, параметры и характеристики
- •Основные параметры
- •8. Оптоволоконные кабели: виды, основные параметры Строение оптокабеля
- •Параметры оптокабеля:
- •Виды кабелей:
- •Параметры передачи данных
- •Виды кабелей по месту прокладки:
- •9. Фотодиоды: принцип действия, виды, параметры и характеристики
- •Класификация
- •Вольт-амперная характеристика
- •10. Полупроводниковые диоды: устройство, принцип действия.
- •Принцип работы
- •11. Стабисторы: принцип работы, параметры и характеристики
- •12. Полупроводниковый стабилитрон: принцип действия, параметры и характеристики
- •Параметры
- •Примеры характеристик
- •13. Диоды Шоттки: устройство, принцип действия, основные параметры
- •Свойства диодов Шоттки
- •14. Импульсный режим работы полупроводникового диода
- •15. Биполярные транзисторы: устройство, принцип действия, режимы работы, система параметров и характеристик.
- •16. Схемы включения биполярных транзисторов, их параметры и характеристики.
- •17. Полевые транзисторы с индуцированным каналом n-типа: устройство, принцип действия, параметры и характеристики.
- •Предельные эксплуатационные параметры
- •19. Полевые транзисторы с встроенным каналом n-типа: устройство, принцип действия, параметры и характеристики
- •20. Полевые транзисторы с управляющим p/n переходом и каналом n-типа: устройство, принцип действия, управляющая характеристика
- •21. Основные этапы производства интегральных микросхем
- •22. Цифровые интегральные микросхемы: статические и динамические параметры
- •23. Интегральные микросхемы – преобразователи уровней.
- •24. Элементы ттл с открытым коллектором: схемотехника, принцип действия, параметры
- •25. Элементы ттл с тремя состояниями: схемотехника, принцип действия, параметры Элемент с тремя состояниями выхода
- •26. Логический элемент технологии ттлш с пониженной мощностью потребления: схема, принцип работы, передаточная характеристика технология ттлш с пониженной мощностью потребления
- •27. Инвертор кмоп: схемотехника, принцип действия, параметры и характеристики
- •Элемент не кмоп
- •2 8. Базовый логический элемент ттл: схемотехника, принцип работы, параметры и характеристики
- •29. Разновидности технологий ттлш
- •Разновидности Серии ттл-микросхем зарубежного производства
- •Серии ттл-микросхем отечественного производства
- •30. Кмоп элементы „и”, „или”: схемотехника, принцип работы
- •Элемент 2и
- •Элемент 2или
- •31. Элементы кмоп с тремя состояниями: схемотехника, принцип действия
- •32. Способы организации соединений в плис
- •33. Lut: назначение, принцип работы
- •34. Двунаправленный элемент ввода/вывода плис: схемотехника, принцип работы
- •Пример схемы блока ввода-вывода
- •35.Cpld, fpga: особенности функциональных схем
- •1)Конструкция, параметры и характеристики переменных и подстроечных резисторов
- •2. Конструкция, параметры и характеристики термисторов
- •3. Конструкция, параметры и характеристики варисторов
- •4. Конструкция, параметры и характеристики магниторезисторов
- •5. Какая из схем включения транзистора имеет:
- •6.Привести международную систему обозначений параметров биполярных транзисторов
- •7.Привести международную систему обозначений параметров полевых транзисторов
- •8. Система условных обозначений зарубежных фирм (на примере одной фирмы)
- •9.Привести примеры схем устройств с фотодиодами
- •10. Привести примеры схем устройств с оптопарами
- •11. Пример плис cpld
- •12. Пример плис fpga
Параметры оптокабеля:
затухание – потеря мощности передаваемого сигнала. Затухание возникает из-за потерь на розсеивание, частичное поглощение света. Величина потерь зависит от длины волны света. Для примера, инфракрасный свет проходит 10 км, а красный – 0,5 км. Затухание измеряется в децибелах/км.
Дисперсия – рассеивание по времени спектра оптического сигнала. Она обусловлена не идеальностью источников света, а также зависимостью показателей преломления света от длины его волны.
Виды кабелей:
Многоводовые волокна. Диаметр сердечника намного больше чем длина волны света. Световые волны могут распространяться различными путями.
Многоводовое волокно с градиентным коэффициентом. Сердечник имеет разную плотность, которая уменьшается от центра к краям.
Одномодовые волокна. Диаметр сердечника близок к длине волны света.
Параметры передачи данных
скорость передачи данных для одномодовых кабелей 10 Гбит/с, для многомодовых – 1 Гбит/с.
Дальность передачи для одномодовых кабелей 100км, для многомодовых – 5 км.
Виды кабелей по месту прокладки:
Подземные комуникации телефонных служб.
Грунтовые оптокабели.
Соединение внутри здания.
Прокладеные на открытом воздухе.
9. Фотодиоды: принцип действия, виды, параметры и характеристики
Фотодио́д — приёмник оптического излучения, который преобразует попавший на его фоточувствительную область свет в электрический заряд за счёт процессов в p-n-переходе.
Фотодиод, работа которого основана на фотовольтаическом эффекте (разделение электронов и дырок в p- и n- области, за счёт чего образуется заряд (ЭДС)) называется солнечным элементом. Кроме p-n фотодиодов существуют и p-i-n фотодиоды, в которых между слоями p- и n- находится слой изолятора i. p-n и p-i-n фотодиоды только преобразуют свет в электрический ток, но не усиливают его, в отличие от лавинных фотодиодов и фототранзисторов.
Принцип работы
Структурная схема фотодиода.
1 — кристалл полупроводника;
2 — контакты;
3 — выводы;
Ф — поток электромагнитного излучения;
Е — источник постоянного тока;
RH — нагрузка.
При воздействии квантов излучения в базе происходит генерация свободных носителей, которые устремляются к границе p-n-перехода. Ширина базы (n-область) делается такой, чтобы дырки не успевали рекомбинировать до перехода в p-область. Ток фотодиода определяется током неосновных носителей — дрейфовым током. Быстродействие фотодиода определяется скоростью разделения носителей полем p-n-перехода и ёмкостью p-n-перехода Cp-n
Фотодиод может работать в двух режимах:
- фотогальванический — без внешнего напряжения
- фотодиодный — с внешним обратным напряжением
Особенности:
- простота технологии изготовления и структур
- сочетание высокой фоточувствительности и быстродействия
- малое сопротивление базы
- малая инерционность